

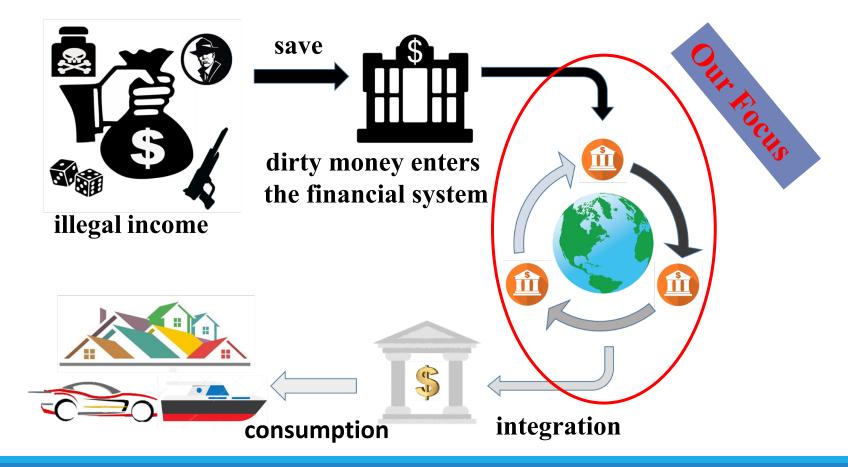
FLOWSCOPE: SPOTTING MONEY LAUNDERING BASED ON GRAPHS

Xiangfeng Li¹, Shenghua Liu², Zifeng Li³, Xiaotian Han⁴, Chuan Shi¹, Bryan Hooi⁵, He Huang⁶, Xueqi Cheng²

¹Beijing University of Post and Telecommunication ²Institute of Computing Technology, Chinese Academy of Sciences ³University of Surrey ⁴Texas A&M University ⁵School of Computer Science, National University of Singapore ⁶China Citic Bank

Motivation

• Typical method of money laundering (ML)

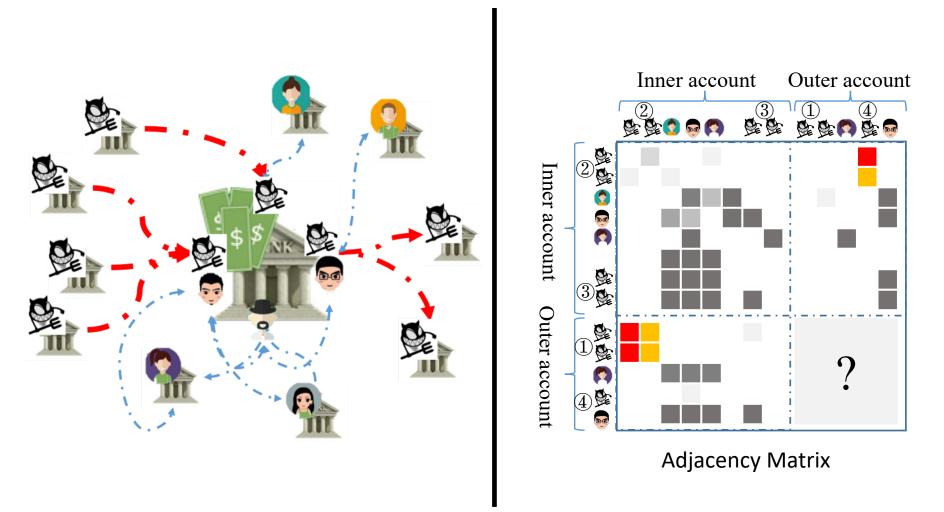


Introduction

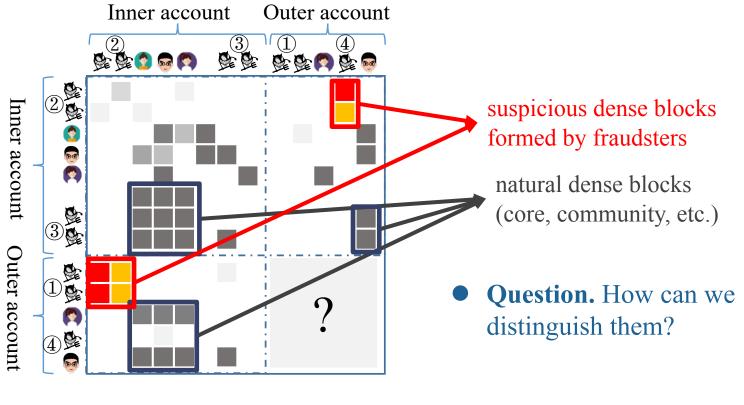
Algorithm Experiments

Conclusion

ML Forms a Multipartite Dense Subgraph



Problem: Natural Dense Subgraph

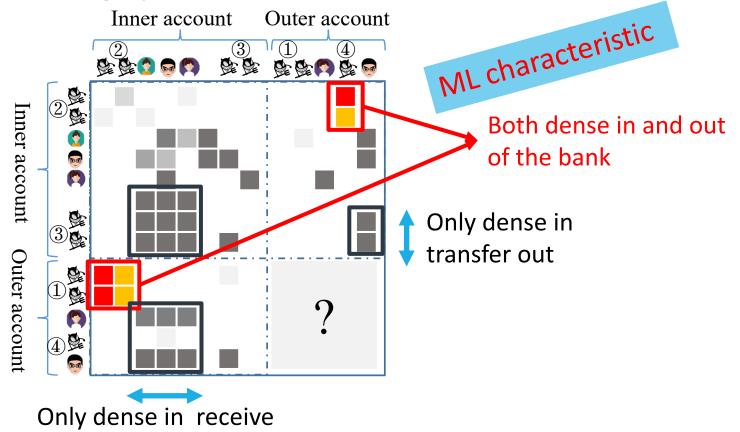


Adjacency Matrix

Introduction

Solution: Multipartite Dense Subgraph

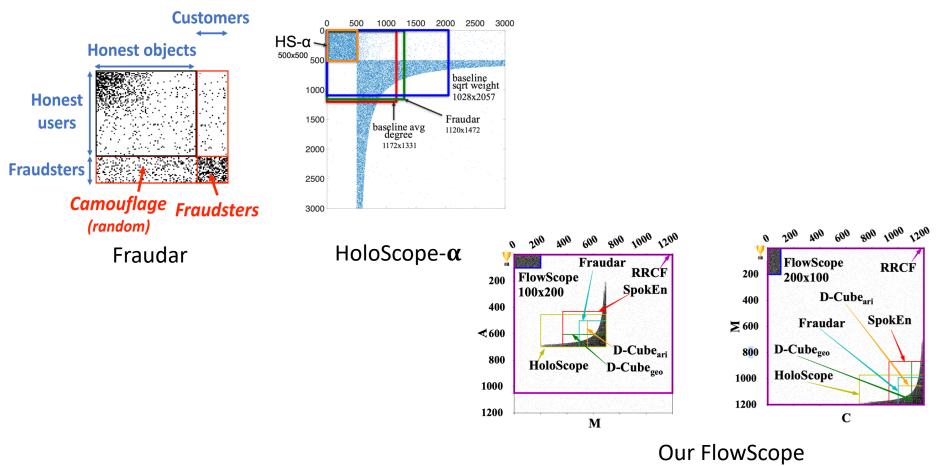
 Natural dense transfer not always form a multipartite dense subgraph



Introduction

Solution: Multipartite Dense Subgraph (cont.)

Our FlowScope catches exactly multipartite dense subgraph



Problem formulation

Given

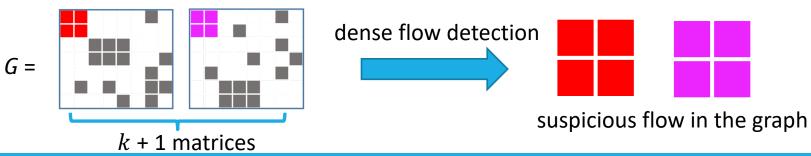
- G = (V, E): a graph of money transfers
- accounts as nodes $\circ V$:
- *E*: money amount as edges weight
- k: number of middle layers

Find

 \circ a dense flow of money transfers (i.e. a subgraph of G),

Such that

- 1) the flow involves high-volume money transfers into the bank, and out of the bank to the destinations;
- 2) it maximizes density as defined in our ML metric.



Requirements

• Our goal is to design an algorithm which is

Fast: runs in near-linear time

Accurate: provides an accuracy guarantee

Effective: produces meaningful results in practice

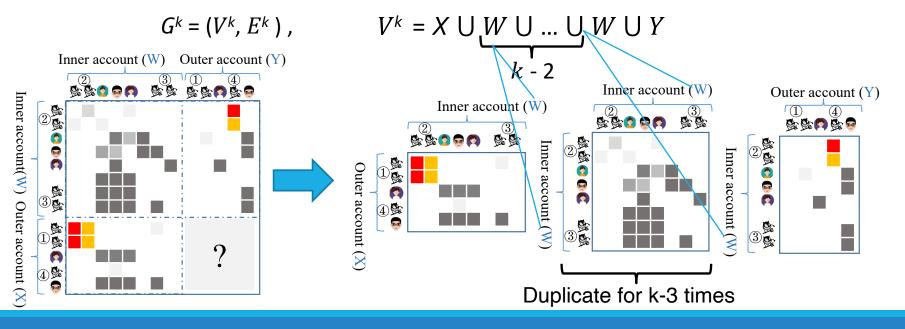
FlowScope, our proposed method, satisfies all the requirements

Model

• Graph

$$G = (V, E), \quad V = X \cup W \cup Y$$

- *W* is the inner accounts of the bank, and *X* and *Y* are sets of outer accounts
- Generate multipartite graph



Model (cont.)

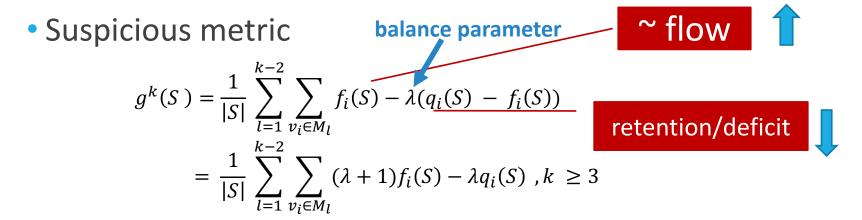
• Out/in degree of each middle-layer node

$$\begin{split} &d_i^+(S) = \sum_{v_j \in M_{l+1} \land (i,j) \in \mathbf{E}} e_{ij} \\ &d_i^-(S) = \sum_{v_k \in M_{l-1} \land (k,i) \in \mathbf{E}} e_{ki} \end{split}$$

Definition of min and max flow

 $f_i(S) = \min\{ d_i^+(S), d_i^-(S) \}, \forall v_i \in M_l$

$$q_i(S) = \max \{ d_i^+(S), d_i^-(S) \}, \forall v_i \in M_l$$

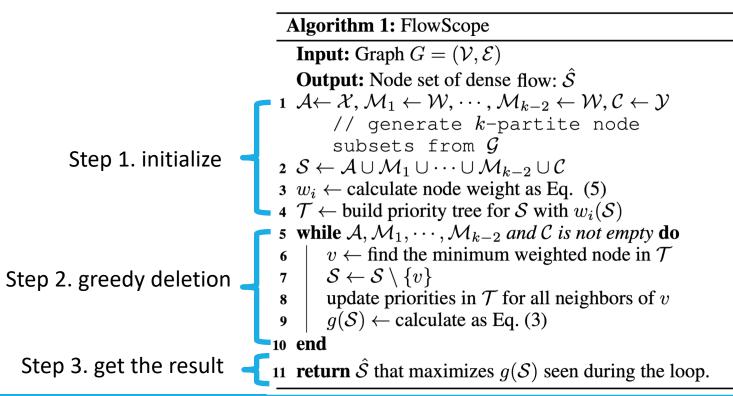


Introduction Model

Algorithm

Algorithm

- Input: Graph G = (V, E)
- **Output:** Node set of dense multipartite flow: *S*
- Key idea: priority tree and greedy deletion

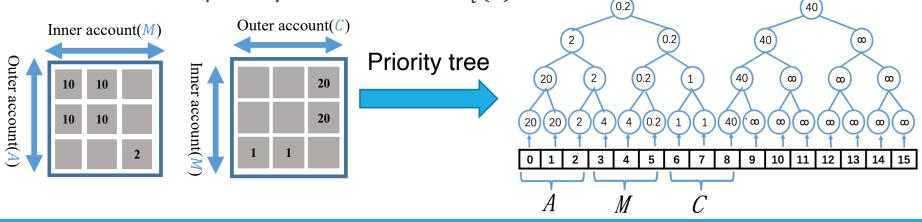


Introduction Model Algorithm

Algorithm (cont.)

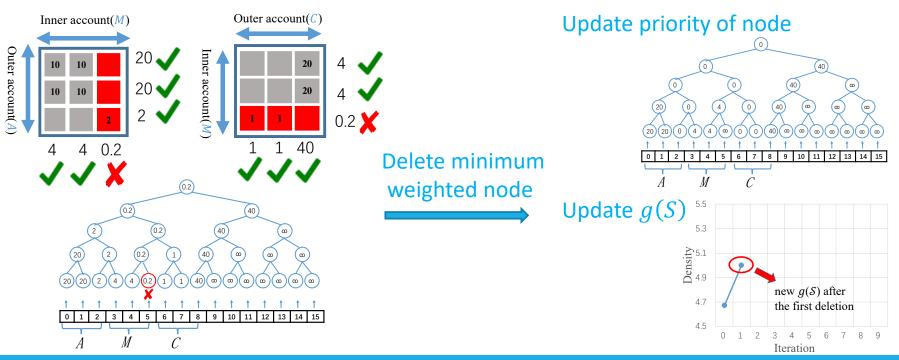
- Step 1. initialize
 - 1. generate the k-partite graph, $A \leftarrow X$, $M_1 \leftarrow W$, ..., $M_{k-2} \leftarrow W$, $C \leftarrow Y$
 - 2. initialize subset $S \leftarrow A \cup M_1 \cup \dots \cup M_{k-2} \cup C$
 - 3. calculate the priority of node

$$w_{i}(S) = \begin{cases} f_{i}(S) - \frac{\lambda}{\lambda + 1} q_{i}(S), & \text{if } v_{i} \in M_{l}, l \in \{1, 2, \dots, k - 2\} \\ q_{i}(S) = d_{i}(S), & \text{if } v_{i} \in A \cup C \end{cases}$$



Algorithm (cont.)

- Step 2. greedy deletion
 - I. get the node v with minimum weight
 - 2. delete the selected node, update the value of g(S) and update node's weight that corelated with v
 - 3. repeat 1 and 2 until one of $A, M_1, \dots, M_{k-2}, C$ is empty



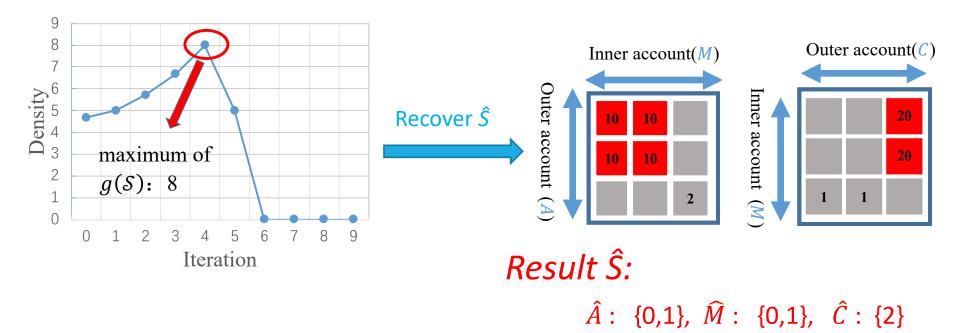
Introduction Model

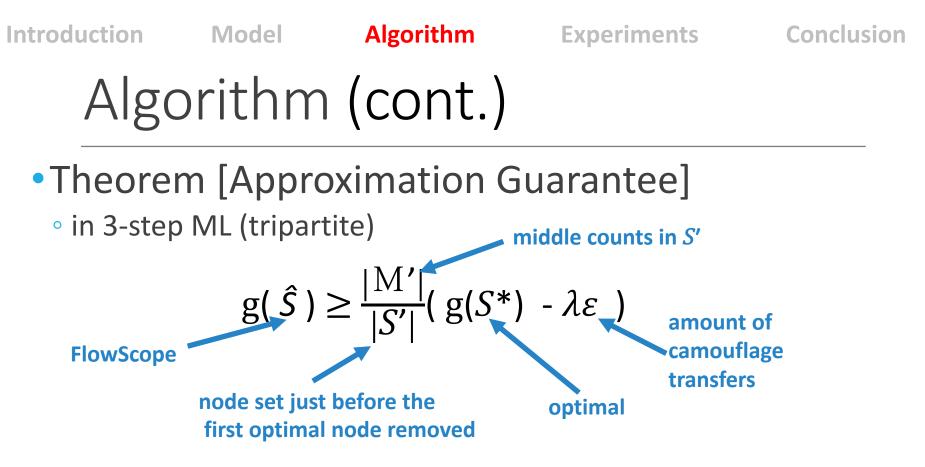
Algorithm Experiments

Conclusion

Algorithm (cont.)

- Step 3. get the result
 - 1. find the maximum value of g(S)
 - 2. recover correspond node set \hat{S} corresponding to maximum g(S)





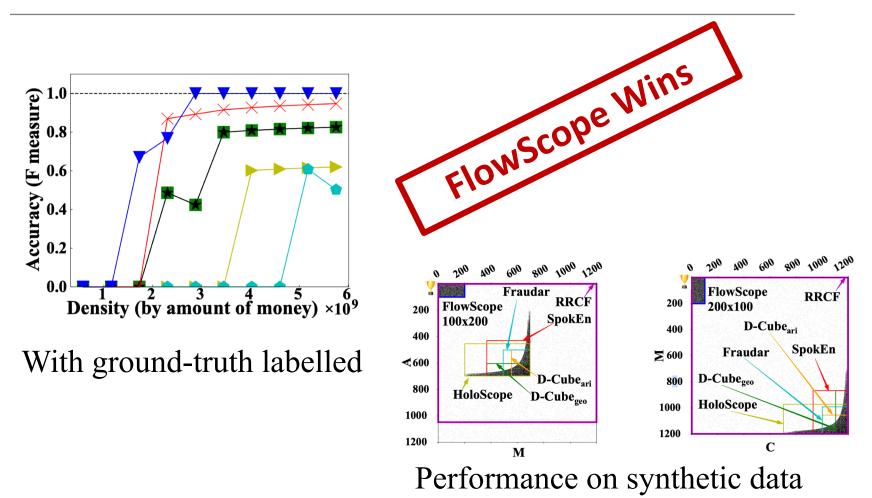
Properties of FlowScope:

Fast: runs in near-linear time

Accurate: provides an accuracy guarantee

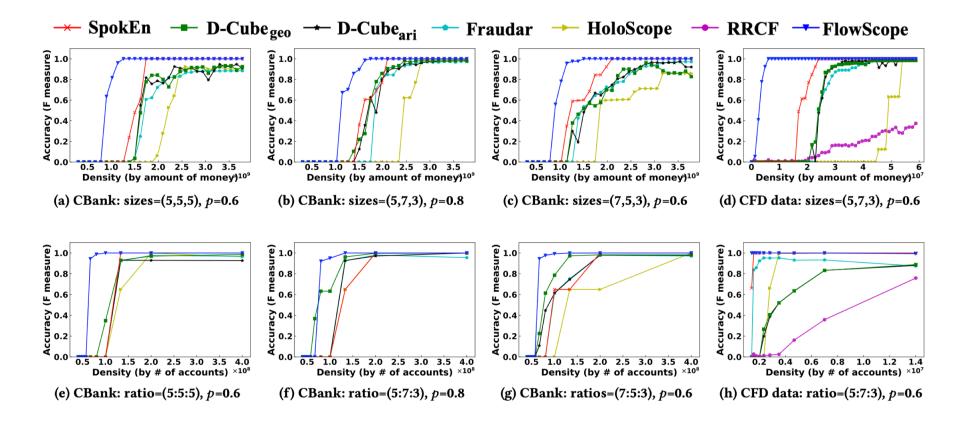
Effective: produces meaningful results in practice

Real-world performance



Effectiveness: one middle layer

Good performance under variety of topologies

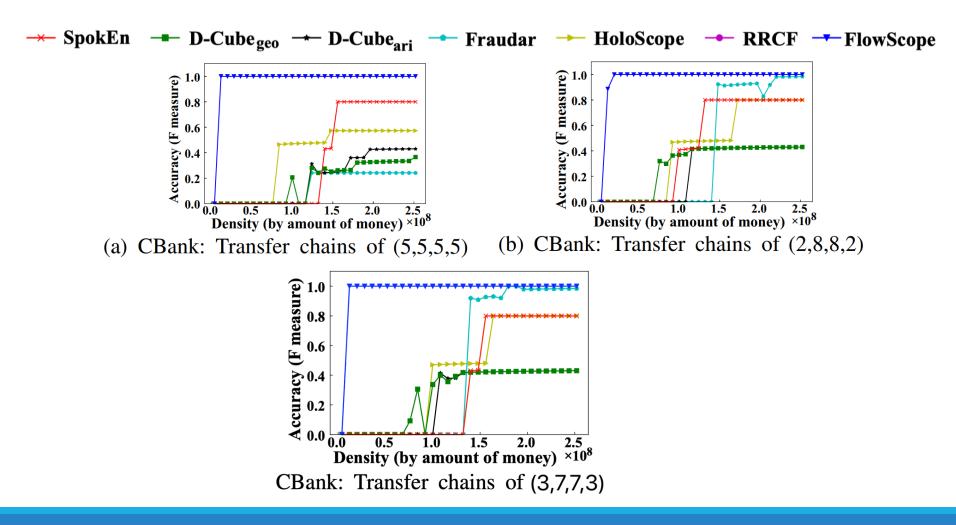


Effectiveness: one middle layer (cont.)

Summary in table

Dataset	metrics*	A:M:C	D-Cube _{ari}	D-Cube _{geo}	Fraudar	HoloScope	SpokEn	RRCF	FlowScope
		5:9:1	0.417 / 0.600	0.591 / 0.810	0.347 / 0.634	0.276 / 0.466	0.610 / 0.753	-/-	0.633 / 0.800
CBank	FAUC	5:5:5	0.502 / 0.658	0.501 / 0.709	0.467 / 0.683	0.379 / 0.655	0.598 / 0.708	-/-	0.757 / 0.843
		7:5:3	0.533 / 0.727	0.522 / 0.779	0.529 / 0.704	0.547	0.633 / 0.708	-/-	0.761 / 0.843
		5:9:1	190 / 30	- / 45	- / 30		154/30	-/-	132 / 75
	$F1 \ge 0.9$ (million \$ / node size)	5:5:5	150 / 45	- / 45	-/	5	116/45	-/-	84.0 / 90
		7:5:3	175 / 30	166 / 54	N.	15	122/30	-/-	76.0 / 90
		5:9:1	0.498 / 0.577	-/45 -/45 166/54 0.529 15 105/30	e 10	0.125 / 0.773	0.716 / 0.894	0.253 / 0.538	0.939 / 0.877
	FAUC	5:5:5	0.565 / 0.633	SCO.	0.867 / و٦	0.143 / 0.810	0.716 / 0.897	0.236 / 0.364	0.962 / 0.900
		7:5:3	0.580/	N	0.593 / 0.826	0.0356 / 0.818	0.728 / 0.898	0.213 / 0.434	0.970 / 0.900
CFD	$F1 \ge 0.9$ (million \$ / node size)	5:9:1	r FII	15	- / 60	3.52 / 60	1.71 / 120	- / 15	0.400 / 150
		5:5:5	1	2.05 / 30	- / 150	- / 75	1.23 / 150	- / 15	0.240 / 150
		7:5:3	-/3	- / 30	- / 120	- / 60	1.46 / 135	- / 15	0.240 / 150

Robustness against longer transfer chains



Effectiveness: varies topologies and labelled data

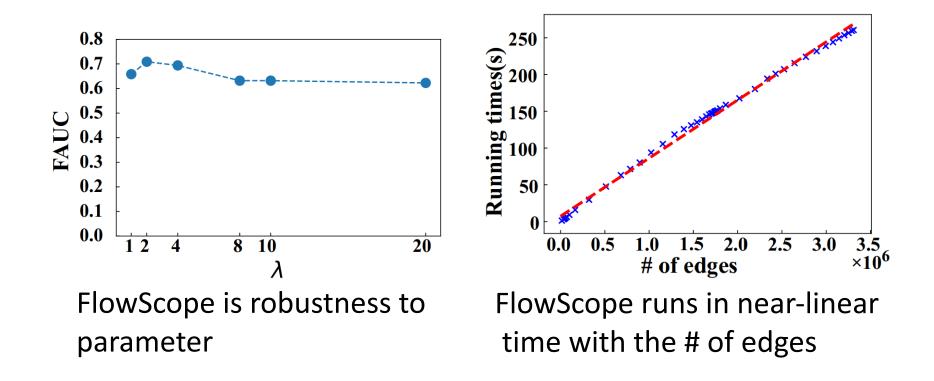
Properties of FlowScope:

Fast: runs in near-linear time
Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice

Algorithm

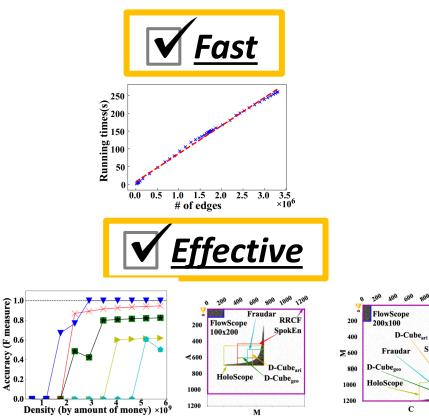
Experiments

Sensitivity and Scalability



Conclusion

FlowScope detects money laundering fast and effectively



$$g(\hat{S}) = \frac{|M'|}{|S'|} (g(S^*) - \lambda \varepsilon)$$

https://github.com/aplaceof/FlowScope

FlowScope: Spotting Money Laundering Based on Graphs

RRCF

SpokEn

Reference

- [Charikar M, 2000] Charikar, Moses. "Greedy approximation algorithms for finding dense components in a graph." International Workshop on Approximation Algorithms for Combinatorial Optimization, 2000.
- [Asahiro et al, SWAT'96] Asahiro, Yuichi, et al. "Greedily finding a dense subgraph." Algorithm TheorySWAT'96 (1996): 136-148.
- [B Hooi et al, KDD'16] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. 2016. Fraudar: bounding graph fraud in the face of camouflage. KDD 2016
- [M-Zoom] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-Zoom: Fast Dense- Block Detection in Tensors with ality Guarantees. ECML-PKDD. 2016, 264–280.
- [D-Cube] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. D-Cube: Dense-Block Detection in Terabyte-Scale Tensors. WSDM '17. 2017.
- [SpokEn] B Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju, and Christos Faloutsos. Eigenspokes: Surprising patterns and scalable community chipping in large graphs. PAKDD 2010, 290–295.
- [Holoscope] Liu, S.; Hooi, B.; and Faloutsos, C. 2017. Holoscope: Topology-and-spike aware fraud detection. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 1539–1548. ACM.
- [RRCF] Guha, S.; Mishra, N.; Roy, G.; and Schrijvers, O. 2016. Robust random cut forest based anomaly detection on streams. In International conference on machine learning, 2712–2721.

Thank you

Questions and Answers

