
FLOWSCOPE: SPOTTING MONEY LAUNDERING

BASED ON GRAPHS

Xiangfeng Li1, Shenghua Liu2, Zifeng Li3, Xiaotian Han4, Chuan Shi1,Bryan Hooi5, He Huang6, Xueqi Cheng2

1Beijing University of Post and Telecommunication 2Institute of Computing Technology, Chinese Academy of Sciences
3University of Surrey 4Texas A&M University

5School of Computer Science, National University of Singapore 6China Citic Bank

Motivation
• Typical method of money laundering (ML)

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

integration

save

dirty money enters
the financial system

illegal income

consumption

Our Focus

2/28

ML Forms a Multipartite Dense Subgraph

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Adjacency Matrix

3/28

Inner account

Inner account Outer account

O
uteraccount

Inneraccount

?

��� �

�

�

�

�

Problem: Natural Dense Subgraph

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Adjacency Matrix

5/28

Inner account

Inner account Outer account

O
uteraccount

Inneraccount

?

��� �

�

�

�

�

natural dense blocks
(core, community, etc.)

suspicious dense blocks
formed by fraudsters

l Question. How can we
distinguish them?

Solution: Multipartite Dense Subgraph
• Natural dense transfer not always form a multipartite
dense subgraph

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

6/28

Inner account

Inner account Outer account

O
uteraccount

Inneraccount

?

��� �

�

�

�

�

Only dense in receive

Only dense in
transfer out

ML characteristic

Both dense in and out
of the bank

Solution: Multipartite Dense Subgraph (cont.)
• Our FlowScope catches exactly multipartite dense subgraph

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Fraudar HoloScope-!

Our FlowScope

7/28

Problem formulation
• Given

◦ ! = (", #): a graph of money transfers
◦ ": accounts as nodes
◦ #: money amount as edges weight
◦ $: number of middle layers

• Find
◦ a dense flow of money transfers (i.e. a subgraph of !),

• Such that
◦ 1) the flow involves high-volume money transfers into the bank,

and out of the bank to the destinations;
◦ 2) it maximizes density as defined in our ML metric.

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

! =

suspicious flow in the graph
$ + 1 matrices

8/28

dense flow detection

Requirements
•Our goal is to design an algorithm which is

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Fast: runs in near-linear time
Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice0

FlowScope, our proposed method, satisfies all the
requirements

9/28

O
uteraccount(X

)

�

�

Inner account (W)
� �

Inneraccount(W
)

�

�

Outer account (Y)
��

Inner account (W)

Inneraccount (W
)

� �

�

�

Model
• Graph

◦ ! is the inner accounts of the bank, and " and # are sets of
outer accounts

• Generate multipartite graph

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

$ = (%, &) , % = " ⋃!⋃ #

Inner account

Inner account (W) Outer account (Y)

O
uteraccount (X

)
Inneraccount(W

)

?

��� �

�

�

�

�
Duplicate for k-3 times

%k = " ⋃!⋃ … ⋃!⋃ #
(- 2

$k = (%k, &k) ,

10/28

Model (cont.)
• Out/in degree of each middle-layer node

• Definition of min and max flow

• Suspicious metric

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

~ flow

retention/deficit

!"
$ = ∑'(∈*+,-⋀ ",0 ∈1 2"0
!"
3 $ = ∑'4∈*+5-⋀ 6," ∈1 26"

7" $ = min{ !"
$, !"

3 $ }, ∀ >" ∈ ?@

A" $ = max { !"
$, !"

3 $ }, ∀ >" ∈ ?@

D6 $ =
1
$
F
@GH

63I

F
'J∈*+

7" $ − L(A" $ − 7" $)

=
1
$
F
@GH

63I

F
'J∈*+

(L + 1)7" $ − LA" $, P ≥ 3

11/28

balance parameter

Algorithm
• Input: Graph ! = (", #)
• Output: Node set of dense multipartite flow: $
• Key idea: priority tree and greedy deletion

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Step 1. initialize

Step 2. greedy deletion

Step 3. get the result

12/28

Algorithm (cont.)
◦ Step 1. initialize
§ 1. generate the !-partite graph, " ← $, %& ← ', … , %()* ← ', + ← ,
§ 2. initialize subset - ← " ⋃%&⋃…⋃M()* ⋃ +
§ 3. calculate the priority of node

§ 4. build priority tree for S with 23 S

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

23 S = 5 63 - − 8
8 + 1;3 - , if ?3 ∈ %A , B ∈ {1, 2, … , ! − 2}

;3 - = F3 - , if ?3 ∈ " ⋃ +

Priority tree
20

20

1 1

10 10

10 10

2

O
uteraccount(!)

Inner account(") Outer account(#)

Inneraccount("
)

13/28

4.5

4.7

4.9

5.1

5.3

5.5

0 1 2 3 4 5 6 7 8 9

D
en
sit
y

Iteration

new !(") after
the first deletion

Algorithm (cont.)
◦ Step 2. greedy deletion
§ 1. get the node ! with minimum weight
§ 2. delete the selected node, update the value of " # and update

node’s weight that corelated with !
§ 3. repeat 1 and 2 until one of $,&',… , &)*+, , is empty

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Delete minimum
weighted node

Update priority of node

Update " #

20 0 420 4 0 40

20 0 4 0 40

0 0 40

0 40

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A M C

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

∞

20 2 4 0.220 4 1 40

20 2 0.2 1 40

2 0.2 40

0.2 40

0.2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A M C

∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

∞

2

20

20

20

20

1 1

10 10

10 10

2

O
uteraccount(!)

Inner account(") Outer account(#)

Inneraccount("
)

4 4 0.2 1 1 40

0.2

4

4

14/28

Algorithm (cont.)
◦ Step 3. get the result
§ 1. find the maximum value of ! "
§ 2. recover correspond node set Ŝ corresponding to maximum ! "

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Recover Ŝ

#$: {0,1}, %& : {0,1}, #' : {2}

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

D
en
sit
y

Iteration

! " ：8
maximum of

20

20

1 1

10 10

10 10

2

O
uteraccount

(!)

Inner account(") Outer account(#)

Inneraccount
("
)

Result Ŝ:

15/28

Algorithm (cont.)
•Theorem [Approximation Guarantee]

◦ in 3-step ML (tripartite)

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

g(Ŝ) ≥ Ｍ’
#’ (g(#*) - $%) amount of

camouflage
transfers

node set just before the
first optimal node removed

FlowScope

middle counts in #ʹ

optimal

Fast: runs in near-linear time
Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice0

Properties of FlowScope:

16/28

Real-world performance

Performance on synthetic data

With ground-truth labelled

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Flow
Scop

e W
ins

17/28

Effectiveness: one middle layer

FlowScope: Spotting Money Laundering Based on Graphs

Good performance under variety of topologies

Introduction Algorithm ExperimentsModel Conclusion

18/28

Effectiveness: one middle layer (cont.)

FlowScope: Spotting Money Laundering Based on Graphs

Summary in table

Introduction Algorithm ExperimentsModel Conclusion

Flow
Scop

e W
ins

19/28

Robustness against longer transfer chains

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

20/28

Effectiveness: varies topologies and labelled data

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

Fast: runs in near-linear time
Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice0

Properties of FlowScope:

21/28

Sensitivity and Scalability

FlowScope: Spotting Money Laundering Based on Graphs

FlowScope is robustness to
parameter

FlowScope runs in near-linear
time with the # of edges

Introduction Algorithm ExperimentsModel Conclusion

22/28

Conclusion

FlowScope: Spotting Money Laundering Based on Graphs

Introduction Algorithm ExperimentsModel Conclusion

• FlowScope detects money laundering fast and
effectively

Accurate

Reproducible
Effective

Fast

https://github.com/aplaceof/FlowScope

g(Ŝ) = Ｍ’
"’ (g("*) - #$)

24/28

https://github.com/aplaceof/FlowScope

Reference

FlowScope: Spotting Money Laundering Based on Graphs

• [Charikar M, 2000] Charikar, Moses. "Greedy approximation algorithms for finding dense
components in a graph." International Workshop on Approximation Algorithms for Combinatorial
Optimization, 2000.

• [Asahiro et al, SWAT'96] Asahiro, Yuichi, et al. "Greedily finding a dense subgraph." Algorithm
TheorySWAT'96 (1996): 136-148.

• [B Hooi et al, KDD’16] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and
Christos Faloutsos. 2016. Fraudar: bounding graph fraud in the face of camouflage. KDD 2016

• [M-Zoom] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-Zoom: Fast Dense- Block
Detection in Tensors with ality Guarantees. ECML-PKDD. 2016, 264–280.

• [D-Cube] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. D-Cube: Dense-
Block Detection in Terabyte-Scale Tensors. WSDM ’17. 2017.

• [SpokEn] B Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju, and
Christos Faloutsos. Eigenspokes: Surprising patterns and scalable community chipping in large
graphs. PAKDD 2010, 290–295.

• [Holoscope] Liu, S.; Hooi, B.; and Faloutsos, C. 2017. Holoscope: Topology-and-spike aware
fraud detection. In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, 1539–1548. ACM.

• [RRCF] Guha, S.; Mishra, N.; Roy, G.; and Schrijvers, O. 2016. Robust random cut forest based
anomaly detection on streams. In International conference on machine learning, 2712–2721.

26/28

Thank you
Questions and Answers

FlowScope: Spotting Money Laundering Based on Graphs 28/28

