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Motivation
• Typical method of money laundering  (ML)
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ML Forms a Multipartite Dense Subgraph
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Problem: Natural Dense Subgraph
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l Question. How can we 
distinguish them?



Solution: Multipartite Dense Subgraph
• Natural dense transfer not always form a multipartite
dense subgraph

FlowScope: Spotting Money Laundering Based on Graphs  

Introduction Algorithm ExperimentsModel Conclusion

6/28

Inner account

Inner account Outer account

O
uteraccount

Inneraccount

?

��� �

�

�

�

�

Only dense in receive

Only dense in
transfer out

ML characteristic

Both dense in and out
of the bank



Solution: Multipartite Dense Subgraph (cont.)
• Our FlowScope catches exactly multipartite dense subgraph
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Problem formulation
• Given

◦ ! = (", # ): a graph of money transfers 
◦ ": accounts as nodes
◦ #: money amount as edges weight
◦ $: number of middle layers

• Find 
◦ a dense flow of money transfers (i.e. a subgraph of ! ),

• Such that
◦ 1) the flow involves high-volume money transfers into the bank, 

and out of the bank to the destinations;
◦ 2) it maximizes density as defined in our ML metric.
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dense flow detection



Requirements
•Our goal is to design an algorithm which is
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Fast: runs in near-linear time
Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice0

FlowScope, our proposed method, satisfies all the 
requirements
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Model
• Graph

◦ ! is the inner accounts of the bank, and " and # are sets of 
outer accounts

• Generate multipartite graph
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Model (cont.)
• Out/in degree of each middle-layer node

• Definition of min and max flow

• Suspicious metric
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Algorithm
• Input: Graph ! = (", # )
• Output: Node set of dense multipartite flow: $
• Key idea: priority tree and greedy deletion
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Step 1. initialize

Step 2. greedy deletion

Step 3. get the result
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Algorithm (cont.)
◦ Step 1. initialize
§ 1. generate the !-partite graph, " ← $, %& ← ', … , %()* ← ', + ← ,
§ 2. initialize subset - ← " ⋃%&⋃…⋃M()* ⋃ +
§ 3. calculate the priority of node

§ 4. build priority tree for S with 23 S
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Algorithm (cont.)
◦ Step 2. greedy deletion
§ 1. get the node ! with minimum weight
§ 2. delete the selected node, update the value of " # and update

node’s weight that corelated with !
§ 3. repeat 1 and 2 until one of $,&',… , &)*+, , is empty
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Algorithm (cont.)
◦ Step 3. get the result
§ 1. find the maximum value of ! "
§ 2. recover correspond node set Ŝ corresponding to maximum ! "
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Algorithm (cont.)
•Theorem [Approximation Guarantee]

◦ in 3-step ML (tripartite)
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g( Ŝ ) ≥ Ｍ’
#’ ( g(#*) - $% ) amount of

camouflage
transfers

node set just before the
first optimal node removed

FlowScope

middle counts in #ʹ 

optimal

Fast: runs in near-linear time
Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice0

Properties of FlowScope:
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Real-world performance

Performance on synthetic data

With ground-truth labelled
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Effectiveness: one middle layer

FlowScope: Spotting Money Laundering Based on Graphs  

Good performance under variety of topologies 
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Effectiveness: one middle layer (cont.)
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Robustness against longer transfer chains
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Effectiveness: varies topologies and labelled data
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Fast: runs in near-linear time
Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice0

Properties of FlowScope:
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Sensitivity and Scalability
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FlowScope is robustness to
parameter

FlowScope runs in near-linear
time with the # of edges 
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Conclusion
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• FlowScope detects money laundering fast and
effectively

Accurate

Reproducible
Effective

Fast

https://github.com/aplaceof/FlowScope

g( Ŝ ) = Ｍ’
"’ ( g("*) - #$ )
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https://github.com/aplaceof/FlowScope
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Thank you
Questions and Answers
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