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Introduction

Motivation
* Typical method of money laundering (ML)

an

dirty money enters
the financial system
illegal income

4 i‘g\

:
ey P

consumption integration

b

FlowScope: Spotting Money Laundering Based on Graphs



Introduction

ML Forms a Multipartite Dense Subgraph
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Introduction

Problem: Natural Dense Subgraph

Inner account  Quter account
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Introduction

Solution: Multipartite Dense Subgraph

* Natural dense transfer not always form a multipartite
dense subgraph
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Introduction

Solution: Multipartite Dense Subgraph (cont.)

* Our FlowScope catches exactly multipartite dense subgraph
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Model

Problem formulation

* Given

o G=(V, E): agraph of money transfers

o V. accounts as nodes

o E: money amount as edges weight

o k: number of middle layers
* Find

o a dense flow of money transfers (i.e. a subgraph of G ),
* Such that

> 1) the flow involves high-volume money transfers into the bank,
and out of the bank to the destinations;

° 2) it maximizes density as defined in our ML metric.

dense flow detection

Y suspicious flow in the graph
k + 1 matrices
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Model

Requirements

* Our goal is to design an algorithm which is

Fast: runs in near-linear time

Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice

FlowScope, our proposed method, satisfies all the
requirements
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Model

Model

* Graph

=(V,E), V=XUWUY

> Wis the inner accounts of the bank, and X and Y are sets of

outer accounts

* Generate multipartite graph

Gk — (Vk Ek )
Inner account (W) Outer account (Y)
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Model

Model (cont.)

* Out/in degree of each middle-layer node

d;f (S) = ZvjEMH_l/\(i,j)EE €ij
d;i (5) = kaEMl_l/\(k,i)EE €ki
* Definition of min and max flow
£;(S) = min{ d; (S),d;(S) },Vv; €M,
q;(S) = max { d; (5),d; (S) },Vv; €M,

* Suspicious metric W t
) =15 Z PR CTOENIC)

~ 8] Z Z A+ Dfi(S) — Aq;i(S) ,k =3

=1 vieM;
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Algorithm

Algorithm

* Input: Graph G=(V, E)
* Output: Node set of dense multipartite flow: S
* Key idea: priority tree and greedy deletion

Algorithm 1: FlowScope
Input: Graph G = (V, €)
Output: Node set of dense flow: S
1 A(—X,Ml (—W,"',Mk_z (—W,C(—y
// generate k-partite node
R subsets from @
3 w; ¢ calculate node weight as Eq. (5)
4 T < build priority tree for S with w;(S)
while A, M1, -, My_o and C is not empty do
v < find the minimum weighted node in 7
S+ S\ {v}
update priorities in 7 for all neighbors of v
9(8S) < calculate as Eq. (3)

Step 2. greedy deletion

U=JN- BN B Y

10 end
Step 3. get the result {11 return S that maximizes ¢(S) seen during the loop.

FlowScope: Spotting Money Laundering Based on Graphs 12/28
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Algorithm

Algorithm (cont.)

o Step 1. initialize
= 1. generate the k-partite graph, A « X, My « W, ... , My_, <« W,C <Y
= 2. initialize subset S « AUM;U ..UMy_, UC
= 3. calculate the priority of node

A .
wi(s) = 1 fi®) = 77 @), ifvieM €12, k-2

qi(S) = d;($), ifv, cAUC
@
= 4. build priority tree for S with w;(S) % e
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Algorithm

Algorithm (cont.)

o Step 2. greedy deletion
= 1. get the node v with minimum weight

= 2. delete the selected node, update the value of g(S) and update
node’s weight that corelated with v

= 3. repeat 1 and 2 until one of A, M4, ... , M}_5, C is empty
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Algorithm

Algorithm (cont.)

o Step 3. get the result
= 1. find the maximum value of g(§)

= 2. recover correspond node set S corresponding to maximum g(§)

)A/ Inner account(/V/) Outer account(()
E, =
— A X ecoers 5 1[I 54000
. \ S =
maximum of | ——> : . . . :
e mmE| -
Ve e e E =
o 1 2 3 4 5 6 7 8 9
[teration Result § .

A: {01}, M: {0,1}, C: {2}
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Algorithm

Algorithm (cont.)

*Theorem [Approximation Guarantee]
° in 3-step ML (tripartite) middle counts in S’
. |M'f/
}VS ) = |S'| ( g(S*) ) Agv)\amount of
FlowScope camouflage
/ \ transfers

node set just before the optimal
first optimal node removed

Properties of FlowScope:

Fast: runs in near-linear time
Z/Accurate: provides an accuracy guarantee
Effective: produces meaningful results in practice
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Experiments

Real-world performance
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Experiments

Effectiveness: one middle layer

Good performance under variety of topologies
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Experiments

Effectiveness: one middle layer (cont.)

Summary in table

Dataset | metrics* A:M:C | D-Cube,,; D-Cubegye, Fraudar HoloScope SpokEn RRCF FlowScope
5:9:1 | 0.417/0.600 | 0.591/0.810 | 0.347/0.634 | 0.276/0.466 | 0.610/0.753 | -/- 0.633/ 0.800
5555 | 0.502/0.658 | 0.501/0.709 | 0.467/0.683 | 0.379/0.655 | 0.598/0.708 | -/- 0.75770.843
FAUC 7:53 | 0.533/0.727 | 0.522/0.779 | 0.52970.704 #” N 0.547 | 0.633/0.708 | -/- 0.761/0.843
5:9:1 | 190730 /45 154730 o7- 132/75
CBank F1>09 555 | 150745 “/45 116/ 45 o/- 84.0/ 90
(million $ / node size) 53175739 166/ 54 122730 o7- 76.0/ 90
5:9:11 | 0.498/0.577 ; [70.125/0.773 | 0.716/0.894 | 0.253/0.538 | 0.939/0.877
555 0.143/0.810 | 0.716/0.897 | 0.236/0.364 | 0.962/0.900
FAUC 7:53 0.593/0.826 | 0.0356/0.818 | 0.728/0.898 | 0.213/0.434 | 0.970/0.900
5:9:1 ~760 352760 1717120 | -/15 0.400/ 150
CFD F1> 0.9 555 Z7150 WET 123/150 | -/15 0.240/ 150
(million $ / node size) =57 Z7120 2760 146/135 | -/15 02407150
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Experiments

Robustness against longer transfer chains
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Experiments

Effectiveness: varies topologies and labelled data

Properties of FlowScope:

Fast: runs in near-linear time

v/ Accurate: provides an accuracy guarantee
VI/Effective: produces meaningful results in practice
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Experiments

Sensitivity and Scalability
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Conclusion

Conclusion

* FlowScope detects money laundering fast and

effectively
v/ Fast v Accurate
o - [M]
E 5‘; 0.{ :::'1.0 IS 20 25 30 35,
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V[ Effective
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) GitHub

https://github.com/aplaceof/FlowScope
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Thank you

Questions and Answers
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