Carnegie Mellon University

HOLOSCOPE: TOPOLOGY-AND-SPIKE AWARE FRAUD DETECTION

Shenghua Liu⁺

Joint work with Bryan Hooi*, Christos Faloutsos*

2017/11/13 *Computer Science Department, CMU *Institute of Computing Technology ICT, CAS 1

MONTHLY ACTIVE (MAUs) & DAILY ACTIVE USERS (DAUs)

53.1% of entire China Population use internet The average person will spend nearly 3 hours/day = 8 YEARS, world's 2nd Brazilians: 5 hours/day; U.S. people: 2 hours/day

SocialMediaToday mediakix

statista 🖊

MONTHLY ACTIVE (MAUs) & DAILY ACTIVE USERS (DAUs)

\$750 billion is spent by Chinese consumers online in 2016 --according to China's National Bureau of Statistics

SocialMediaToday mediakix

Methbot creates 300 Million fake "reviews" and clicks a day, earning \$5 million every day from them,

a report of WhiteOps (ad-fraud-detection company), Dec 2016

HoloScope: Topology-and-Spike Aware Fraud Detection

 Our HoloScope: HS-α and HS detect injected fraudsters with higher accuracy (F measure), even when the injection density become lower.

HoloScope: Topology-and-Spike Aware Fraud Detection

Our HoloScope: HS detects suspicious users in online system data (Microblog: Sina Weibo).

HoloScope: Topology-and-Spike Aware Fraud Detection

Our HoloScope: runs near-linear time in # of edges.

Outline

- Background and Problem
- Graph-based fraud detection
- HoloScope Algorithm
- Experiments
- Conclusion

Abstract activities into bipartite Graph

Problem of fraud detection

• (user, object, timstamp, #stars)

Find:

(user, object, timestamp, #stars)

(user, object, timestamp, #stars)

(user, object, timestamp, #stars)

a group of suspicious users, and objects,

To optimize:

 the metric of suspiciousness from topology, rating time and scores.

Outline

Background and Problem

- Graph-based fraud detections
- HoloScope Algorithm
- Experiments
- Conclusion

Why using graph to detect fraud?

- Content can be cheated by NLP technology
- Content is not available
- Graph is a good representation of
 - users reviewing/giving scores to objects
 - a user clicking a link, and watching a video
- Dense blocks in such a graph are usually

suspicious

Average degree density works better than volume density for fraud detection

Volume density

- Suppose
 - \checkmark a fraudster has # of accounts: a
 - \checkmark his goal is click *b* objects 200 times
- Density: $(b \cdot 200)/(a \cdot b) = 200/a$
- unlimited b does not increase density
- Average degree: arithmetic / geometric
 - Arithmetic avg: $(b \cdot 200)/(a + b)$
 - Geometric avg: $(b \cdot 200)/(\sqrt{ab})$

Very popular products are less suspicious

- Fraudar penalizes the weight of each edge
 - preprocess: $e_{uv} \leftarrow 1/\log(\deg(v) + c) \cdot e_{uv}$, \checkmark where $e_{uv} = \mathbb{M}(u,v), c=5$
 - avg degree: $g_{log}(X) = \frac{1}{|X|} \sum_{u,v \in X} e_{uv}$

2017/11/13

Challenge I: Hyperbolic community exists in real graphs

Hyperbolic communities in YouTube friendship and Wikipedia articles [SNAP datasets]

Hyperbolic community In our BeerAdvocate data

beer products

cross-association [D Chakrabarti et al, KDD'04]; Hyperbolic community 2017/11/1 detection [M Araujo et al, ECML-PKDD'14]; SNAP datasets: http://snap.stanford.edu/data/index.html $\times 10^4$

How can we avoid detecting the false positive hyperbolic block?

Challenge II: Consider temporal information in fraud detection

camouflage

hy-community

spike-aware

Tensor-based methods (M-Zoom, D-Cube, CrossSpot) detect the two cases as the same density level in temporal dim.

"hy-community" : avoid detecting the naturally-formed hyperbolic topology

?

?

?

 \checkmark

?

- Background and Problem
- Graph-based fraud detection
- HoloScope Algorithm
- Experiments
- Conclusion

Contrast suspiciousness in HoloScope

$$D(A,B) = \frac{\sum_{v_i \in B} f_A(v_i)}{|A| + |B|}$$

• $A \subset U, B \subset V$
• $f_A(v_i) = \sum_{(u_j, v_i) \in E \land u_j \in A} \sigma_{ji} \cdot e_{ji}$, σ_{ji} is edge weight

• Contrast susp: $P(v_i \in B|A)$

the conditional likelihood

Detailed Outline

- Background and Problem
- Graph-based fraud detection
- HoloScope Algorithm
 - Topology-aware HS-α
 - Temporal-spike aware
 - HS: make holistic use of signals
 - Scalable Algorithm
- Experiments

Conclusion

Topology-aware (dense block) HS-α

•
$$P(v_i|A) = q(\alpha_i), \alpha_i = \frac{f_A(v_i)}{f_U(v_i)}$$

- Scaling fun: $q(x) = b^{x-1}$, $0 \le x \le 1$ and constant b > 1
- users' susp score:

•
$$S(u_j \in A) = \sum_{u_j v_i \in E} \sigma_{ji} e_{ji} \cdot P(v_i | A)$$

Algorithm HS-α considers topology

HS-α can shrink the detection box over hyperbolic community

Synthetic data

- Scaling fun: $q(\alpha_i) = 128^{\alpha_i 1}$
- b = 128

Detailed Outline

- Background and Problem
- Graph-based fraud detection
- HoloScope Algorithm
 - Topology-aware HS-α
 - Temporal-spike aware
 - HS: make holistic use of signals
 - Scalable Algorithm
- Experiments
- Conclusion

Temporal spike: burst and drop are suspicious

- The histogram (time series) of a sink node
 - users retweet a message in Sina Weibo data.

Detect spikes in time series of a sink node

- SB (Sleeping Beauty) defines burst and awakening point
- drop and dying point

Detecting and identifying Sleeping Beauties in science [Ke et al, ^{2017/11/1} PNAS'15]

HoloScope considers time spikes

multibust

$$P(v_i|A) = q(\varphi_i), \ \varphi_i = \frac{\Phi(T_A)}{\Phi(T_U)}$$
$$\Phi(T) = \sum_{(t_a, t_m)} \Delta c_{am} \cdot s_{am} \sum_{t \in T} \mathbf{1}(t \in [t_a, t_m])$$

 $\max_A HS(A) := \mathbb{E}\left[D(A, B)\right]$

*ሐ(*፹)

 $= \frac{1}{|A| + \sum P(v_k|A)} \sum_{i \in V} f_A(v_i) P(v_i|A)$

sudden drop

•
$$f_A(v_i) = \sum_j \sigma_{ji} e_{ji}$$

•
$$\sigma_{ji} = \Delta c_{bd} \cdot s_{bd}$$

2017/11/13

- Δt is the size of time bins,
- S₁ and S₂ are the slopes of normal rise and decline respectively

Detailed Outline

- Background and Problem
- Graph-based fraud detection

HoloScope Algorithm

- Topology-aware HS-α
- Temporal-spike aware
- HS: make holistic use of signals
- Scalable Algorithm
- Experiments

Conclusion

HS: make holistic use of signals

- Topology awareness: $\alpha_i = \frac{f_A(v_i)}{f_U(v_i)}$
- Temporal-spike awareness: $\varphi_i = \frac{\Phi(T_A)}{\Phi(T_{II})}$
- Rating deviation: κ_i
 - κ_i =KL-divergence($A, U \setminus A$)

•
$$\kappa_i \leftarrow \kappa_i \cdot \min\{\frac{f_A(v_i)}{f_{U \setminus A}(v_i)}, \frac{f_{U \setminus A}(v_i)}{f_A(v_i)}\}$$

- Contrast susp of HS
 - $P(v_i|A) = \boldsymbol{q}(\alpha_i)\boldsymbol{q}(\varphi_i)\boldsymbol{q}(\kappa_i) = b^{\alpha_i + \varphi_i + \kappa_i 3}$
 - "joint probability"

$$\max_{A} HS(A) := \mathbb{E} \left[D(A, B) \right]$$
$$= \frac{1}{|A| + \sum_{k \in V} P(v_k | A)} \sum_{i \in V} f_A(v_i) P(v_i | A)$$

2017/11/13

of stars

30

Using the same algorithm framework

Find burst and drop points of each sink node

- cost $O(d_v)$, total cost O(|E|)
- Use framework of HS- α algorithm

Algorithm 3 HS algorithm (unscalable).

Given bipartite multigraph $\mathcal{G}(U, V, E)$, initial source nodes $A_0 \subset U$. Initialize: $A = A_0$ \mathcal{P} = calculate contrast suspiciousness given A_0 S = calculate suspiciousness scores of source nodes A. $O(m_0 \log m_0), m_0 = |A_0|$ MT = build priority tree of A with scores S. while A is not empty do u = pop the source node of the minimum score from MT. $A = A \setminus u$, delete *u* from *A*. $O(d_{\eta} \cdot |A|)$ Update \mathcal{P} with respect to new source nodes A. Update *MT* with respect to new \mathcal{P} . $O(d_u \cdot |A| \cdot \log m_0)$ Keep A^* that has the largest objective $HS(A^*)$ end while **return** A^* and $P(v|A^*), v \in V$.

Time complexity

The time complexity is

•
$$\sum_{j=2,\cdots,m_0} O(d_j \cdot (j-1) \cdot \log m_0) = O(m_0 |E_0| \log m_0)$$

• When $A_0 = U$, it is $O(|U||E|\log |U|)$

Scalable HS algorithm

• Main idea: feed small groups of users \tilde{U} into *GreedyShaving* Procedure (previous HS alg.)

Algorithm 4 FastGreedy Algorithm for Fraud detection.

(product, time bins)

Scalable HS alg is sub-quadratic # of nodes

Theorem 2 (algorithm complexity)

Skip process Given |V| = O(|U|) and $|E| = O(|U|^{\epsilon_0})$,

> the time complexity of *FastGreedy* is subquadratic, $o(|U|^2)$ in little-*o* notation,

if $|\widetilde{U}^{(k)}| \le |U|^{1/\epsilon}$, where $\epsilon > \max\{1.5, \frac{2}{3-\epsilon_0}\}$

In real life graph, if $\epsilon_0 \leq 1.6$, so we can limit $|\widetilde{U}^{(k)}| \leq |U|^{1/1.6}$

Outline

- Background and Problem
- Graph-based fraud detection
- HoloScope Algorithm
- Experiments
- Conclusion

Data sets

Table 1: Data Statistics

Data Name	#nodes	#edges	time span	
BeerAdvocate	26.5K x 50.8K	1.07M	Jan 08 - Nov 11	
Yelp	686K x 85.3K	2.68M	Oct 04 - Jul 16	
Amazon Phone & Acc	2.26M x 329K	3.45M	Jan 07 - Jul 14	
Amazon Electronics	4.20M x 476K	7.82M	Dec 98 - Jul 14	
Amazon Grocery	763K x 165K	1.29M	Jan 07 - Jul 14	
Amazon mix category	1.08M x 726K	2.72M	Jan 04 - Jun 06	

Data sets are published by [J McAuley and J Leskovec, RecSys'13] [J McAuley and J Leskovec, WWW'13] [A Mukherjee et al, WWW'12]

Performance on injected labels

Mimic fraudsters to inject edges, time stamps and #stars, with different fraudulent density

BeerAdvocate Data

HS- α consider only topology (density)

HS consider all signals

We use two quantitative metrics for comparison

1. "auc": the area under the curve of the accuracy curve 2. lowest detection (0.0333, 0.92723) density (L.D.D.): the F measure HS F of A density that a method ▲M-Zoom F of A ▼M-Zoom F of B can detect in high ➔D-Cube F of A accuracy ("≥ 90%"). ➡D-Cube F of B +CrossSpot F of A CrossSpot F of B 0.2 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0 density

The fraudulent density ranges from 1.0 to 0.01 for testing

Performance on injected labels by mimicking

		source nodes				sink nodes			
Data Name	metrics*	M-Zoom	D-Cube	CrossSpot	HS	M-Zoom	D-Cube	CrossSpot	HS
_	auc	0.7280	0.7353	0.2259	0.9758	0.6221	0.6454	0.1295	0.9945
BeerAdvocate	F≥90%	0.5000	0.5000	—	0.0333	0.5000	0.5000	-	0.0333
	auc	0.9019	0.9137	0.9916	0.9925	0.9709	0.8863	0.0415	0.9950
Yelp	F≥90%	0.2500	0.2000	0.0200	0.0143	0.0250	1.0000	-	0.0100
Amazon	auc	0.9246	0.8042	0.0169	0.9691	0.9279	0.8810	0.0515	0.9823
Phone & Acc	F≥90%	0.1667	0.5000	_	0.0200 [†]	0.1429	0.1000	-	0.0200 [†]
Amazon	auc	0.9141	0.9117	0.0009	0.9250	0.9142	0.7868	0.0301	0.9385
Electronics	F≥90%	0.2000	0.1250	_	0.1000	0.1000	0.5000	-	0.1250
Amazon	auc	0.8998	0.8428	0.0058	0.9250	0.8756	0.8241	0.0200	0.9621
Grocery	F≥90%	0.1667	0.5000	_	0.1000	0.1250	0.2500	-	0.1000
Amazon	auc	0.9001	0.8490	0.5747	0.9922	0.9937	0.9346	0.0157	0.9950
mix category	F≥90%	0.2500	0.5000	0.2000 [†]	0.0167	0.0100	0.2000	-	0.0100

* the performance is very stable when *b* larger than 32.

- HS achieved the best auc, and even reached the testing upper bound (0.9950) in two cases
- HS has L.D.D. as small as 200/14000=0.0143 on source nodes, the minimum test density 0.01 on sink nodes.

Performance on real labels from online system

Sina Weibo is a microblog and Twitter-like website

 2.75 M users, 8.08 M messages, and 50.1 M edges in our data of Dec 2013

Scalability

Outline

- Background and Problem
- Graph-based fraud detection
- HoloScope Algorithm
- Experiments
- Conclusion

Conclusion and taking away

- HoloScope:
 - Fraud detection on (user, object, timstamp, #stars)
- Unification of signals

100 - O - - - O

0.125

0.2

0.4

0.6

density

- topology, temporal spikes, and rating deviation
- Theoretical analysis of fraudsters' obstruction

0.8

d HS-α F of A

Fraudar F of B

+SpokEn F of A

*SpokEn F of B

0.8

Algorithm running Time (s)

10

of edges

Effectiveness

0.9

0.8

0.7

0.3

0.2

0.1

2017/11/13

spikes

topology

rating

More information about HoloScope

- Most data sets is publicly available
- Source code
 - https://github.com/shenghua-liu/HoloScope

Reference

- [Charikar M, 2000] Charikar, Moses. "Greedy approximation algorithms for finding dense components in a graph." International Workshop on Approximation Algorithms for Combinatorial Optimization, 2000.
- **[Asahiro et al, SWAT'96]** Asahiro, Yuichi, et al. "Greedily finding a dense subgraph." *Algorithm Theory— SWAT'96* (1996): 136-148.
- **B Hooi et al, KDD'16]** Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos
- Faloutsos. 2016. Fraudar: bounding graph fraud in the face of camouflage. KDD 2016
- [M Araujo et al, ECML-PKDD'14] Miguel Araujo, Stephan Gunnemann, Gonzalo Mateos, and Christos Faloutsos. Beyond blocks: Hyperbolic community detection. ECML-PKDD, 2014. 50–65.
- [M-Zoom] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-Zoom: Fast Dense- Block Detection in Tensors with ality Guarantees. ECML-PKDD. 2016, 264–280.
- **[D-Cube]** Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. D-Cube: Dense-Block Detection in Terabyte-Scale Tensors. WSDM '17. 2017.
- [CrossSpot] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos. A general suspiciousness metric for dense blocks in multimodal data. ICDM, 2015, 781–786.
- [CopyCatch] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. Copycatch: stopping group attacks by spotting lockstep behavior in social networks, WWW 2013. 119–130.
- [SpokEn] B Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju, and Christos Faloutsos. Eigenspokes: Surprising patterns and scalable community chipping in large graphs. PAKDD 2010, 290–295.
- [Ke et al, PNAS'15] Qing Ke, Emilio Ferrara, Filippo Radicchi, and Alessandro Flammini. Detecting and identifying Sleeping Beauties in science. PNAS, 112, 24 (2015), 7426–7431.
 2017/11/13

Carnegie Mellon University

Questions & Answers THANK YOU