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MONTHLY ACTIVE (MAUs) & DAILY ACTIVE USERS (DAUs)

FACEBOOK

1.13 BILLION

53.1% of entire China Population use internet

The average person will spend nearly

3 hours/day =8 YEARS, world’s 2"
Brazilians: 5 hours/day; U.S. people: 2 hours/day
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MONTHLY ACTIVE (MAUs) & DAILY ACTIVE USERS (DAUs)
/]|
LCEBOOK ﬂTUBE
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1 BILLION [{{l EATING/DRINKING (3 YEARS, 5 MONTHS)
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(Gl GROOMING (1 YEAR, 10 MONTHS)
_ _ (@ SOCIALIZING (1 YEAR, 3 MONTHS)
INSTAGRAM TWITTER MAUSs [e]l] DOING LAUNDRY (6 MONTHS)

$750 billion is spent by Chinese consumers
online in 2016

--according to China’s National Bureau of Statistics
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Methbot creates

300 Million fake ”reviews” and
clicks a day, earning

S5 million every day from them,

a report of WhiteOps (ad-fraud-detection company), Dec 2016
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HoloScope: Topology-and-Spike Aware Fraud
Detection

m  Our HoloScope: HS-a and HS detect injected fraudsters with higher accuracy
(F measure), even when the injection density become lower.
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HoloScope: Topology-and-Spike Aware Fraud
Detection

= Our HoloScope: HS detects suspicious users in online
system data (Microblog: Sina Weibo).
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0.2 large result set
with low

0.1 precision

0

F-measure

2.75 M users, 8.08 M messages, and 50.1 M

edges in our data of Dec 2013
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HoloScope: Topology-and-Spike Aware Fraud
Detection

m Our HoloScope: runs near-linear time in # of edges.
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Outline

= Background and Problem

= Graph-based fraud detection
= HoloScope Algorithm

m Experiments

= Conclusion
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Abstract activities into bipartite Graph

source sink
nodes EEEE nodes
Amazon A (rate/purchase) products
Yelp users objects (ra'te) re.staurants
Youtube (click) videos
Facebook (like) posts
Twitter (retweet) messages
LAl 2cjacency matrix gy €cge prope
AAAN A -
o (1' 5 1 \ timestamp, #stars; ... ...
@) 1 6 timestamp, #stars
UV,E =
g( ) U o 4 M E timestamp, #stars; ... ...
o A
\ / timestamp, #stars; ... ...
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Problem of fraud detection

] G iven. (user, object, timestamps#stass)

* (user, object, timstamp, #stars) [ (user, object, timestams; #stars)

[ Find: (user, object=timestamp-Hstass)

* a group of suspicious users, and objects,

= To optimize:

* the metric of suspiciousness from topology, rating
time and scores.

2017/11/13 10



Outline

= Graph-based fraud detections
= HoloScope Algorithm

m Experiments

= Conclusion

2017/11/13
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Why using graph to detect fraud?

m Content can be cheated by NLP technology
= Content is not available
m Graph is a good representation of

* users reviewing/giving scores to objects
* a user clicking a link, and watching a video

= Dense blocks in such a graph are usually
suspicious

2017/11/13
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Average degree density works better than
volume density for fraud detection

= Volume density

* Suppose
v'a fraudster has # of accounts: a
v'his goal is click b objects 200 times

* Density: (b -200)/(a-b) =200/a
 unlimited b does not increase density

= Average degree: arithmetic / geometric
* Arithmetic avg: (b - 200)/(a + b)

* Geometric avg: (b - 200)/(@)

2017/11/1: [Asahiro et al, SWAT96] [M Charikar, 2000] [B Hooi et al, KDD’16]
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Very popular products are less suspicious

= Fraudar penalizes the weight of each edge

* preprocess: e,, < 1/log(deg(v) + ¢) - ey,

v'where e, = M(u,v), c=5
1

* avg degree: giog(X) = %7 Zuvex Cuv y dﬁg(v)

M

Fraudar: bounding graph fraud in the face of camouflage [B

201771113 Hooi et al, KDD'16]
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Challenge I: Hyperbolic community exists in
real graphs
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Hyperbolic communities beer products o
in YouTube friendship and Hyperbolic community
Wikipedia articles [SNAP In our BeerAdvocate data
datasets]

cross-association [D Chakrabarti et al, KDD’04]; Hyperbolic community
2017/11/1 detection [M Araujo et al, ECML-PKDD’14]; SNAP datasets: 15
http://snap.stanford.edu/data/index.html



How can we avoid detecting the false positive
hyperbolic block?

Penalize sink nodes
in both blocks
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Challenge lI: Consider temporal information in
fraud detection

time bins
4 user
2
product
> time Comparison with existing methods
o Q
g . & A "
v o " & B E| §
£ 4 2% & &z
> time & 8 5 & 2|8
alabili v v v v v V|V
Tensor-based methods (M-Zoom, ciinsuﬂ;ge v 2 Al v
D-Cube, CrossSpot) detect the hy-community ? 2 v
spike-aware ? v

two cases as the same density

level in temporal dim. “hy-community” : avoid detecting the naturally-formed

hyperbolic topology
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Outline

]

= HoloScope Algorithm
m Experiments

= Conclusion

2017/11/13
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Contrast suspiciousness in HoloScope

Vi V
' DBy = et LaD {rolf
’ Al +|B] . N
- AcUBCV U ’/\.'P(vl. | A)
c v = 2 e a;; is edge weight S
(uj,vi)€EAuU; €A M
m Contrast susp: P(v; € B|A)
* the conditional likelihood
| ObjeCtive: mngS(A) — E[D(A, B)]
1
= fA(vi)P(vilA)
AL+ ) Pu |A);;
keV
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Detailed Outline

= HoloScope Algorithm
* Topology-aware HS-a
* Temporal-spike aware
* HS: make holistic use of signals
* Scalable Algorithm

= Experiments
m Conclusion

2017/11/13
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Topology-aware (dense block) HS-a

* POiA) = a(@.a = 70

» Scaling fun: g(x) = b*1,0 < x < 1 and constant

A Lod
m users’ susp score: {

U )
’ S(uj € A) = ZujviEE gjieji - P(vi|A) g

No riightRo——
penalty .. HeavyR

penalty

2500
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Algorithm HS-a considers topology

Algorithm 1 HS-a Algorithm.

Smin:

Given adjacency matrix M
Initialize:
A=U
$= calculate contrast susp of all sink nodes given A
S = calculate susp scores of source nodes A.
MT = build priority tree of A with scores S.
while A is not empty do

u = pop the source node of the minimum score from MT.

A = A\ u, delete u from A.

Update P with respect to new source nodes A.
Update MT with respect to new P.

Keep A* that has the largest objective HS(A™)

end while
return A* and P(v|A¥),v e V.

epoch 1:

epoch 2:

Vv

Smin

~

i
i
i
1
v

epoch |U|-1: V

Al
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HS-a can shrink the detection box over
hyperbolic community

= Synthetic data
e Scaling fun: g(a;) = 128%i71
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Detailed Outline

= HoloScope Algorithm

Temporal-spike aware
HS: make holistic use of signals
Scalable Algorithm

m Experiments
m Conclusion

2017/11/13
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Temporal spike: burst and drop are suspicious

= The histogram (time series) of a sink node
* users retweet a message in Sina Weibo data.
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Detect spikes in time series of a sink node

= SB (Sleeping Beauty) defines burst and awakening point
= drop and dying point
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time (s)

g

awakening point: the point
has the largest distance to [

- argmax ‘{Cm - C{])t_ (tm - Il])c +tmCo = Cmio|

(c,t)eT,t<t,, \z{cm _ C{])z + (b - tn)z

Detecting and identifying Sleeping Beauties in science [Ke et al,

PNAS’15]
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HoloScope considers time spikes

m multibust

P(T4)
cPild) = qle) o =5 °
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Time obstruction for fraudsters

m Theorem 1

# of edges

*
*
.
.
.
.
.
.
.
.
.*
*

Let N be the number of edges that fraudsters want to
create for an object.
If the fraudsters use time less than

2NAt - (S; + S,)
T2
Sl ¢ SZ

then they will be tracked by a suspicious burst or drop.

= At is the size of time bins,
= §; and S, are the slopes of normal rise and decline
respectively

2017/11/13 28



Detailed Outline

= HoloScope Algorithm

* HS: make holistic use of signals
* Scalable Algorithm

= Experiments
m Conclusion
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HS: make holistic use of signals

fa(;)
fui)

= Topology awareness: a; =

D(Ty)
D(Ty)

= Temporal-spike awareness: @; =

= Rating deviation: k; 550

* K;=KL-divergence(4, U\A) 330

frequency

fa) f U\A(vi)} 50 |
fona@W)’ faw) 1 2 3 4 5

m Contrast susp of HS
- P(v;]4) = q(a;)q(p;)q(k;) = p¥iteitki=3

*  “joint probability”

° K; < K; - min{
W usersiA usersfU\A

# of stars

max HS(4) := B[D(A, B)]

v;)P(vi|A
ZfA()(|) 0

2017/11/13 Tl Z P(vl4) {2
keVv




Using the same algorithm framework

®= Find burst and drop points of each sink node
* cost 0(d,,), total cost O(|E|)

m Use framework of HS-a algorithm

Algorithm 3 HS algorithm (unscalable).

Given bipartite multigraph G(U, V, E),
initial source nodes Ay c U.
Initialize:
A=Ay
P= calculate contrast suspiciousness given Ay

S = calculate suspiciousness scores of source nodes A.
MT = build priority tree of A with scores S. 0 (mo log mo), mgy = |A0|
while A is not empty do

u = pop the source node of the minimum score from MT.

A = A\ u, delete u from A.

Update P with respect to new source nodes A. +———— 0(dy - |A4])

Update MT with respect to new P. < 0(d, - |A| - logm,)

Keep A* that has the largest objective HS(A*)
end while
return A* and P(v|A®),v e V. 31




Time complexity

Algorithm 3 HS algorithm (unscalable).

Given bipartite multigraph G(U, V, E),
initial source nodes Ay C U.
Initialize:
A=A,
P= calculate contrast suspiciousness given Ag
8 = calculate suspiciousness scores of source nodes A.
MT = build priority tree of A with scores S. +———— 0(mylogm), my = |Ap|
while A is not empty do
u = pop the source node of the minimum score from MT.
A = A\ u, delete u from A.
Update P with respect to new source nodes A, +———— 0(dy - 14])
Update MT with respect to new £. < 0(dy - |A|] - logmy)
Keep A* that has the largest objective HS(A*)
end while
return A* and P(v|A*),v € V.

= The time complexity is

© > 0 (j-1)-logmo) = O(mol|Eo| log mo)

J=2,

* WhenA, = U, itis O(|U||E|log|U]|)

2017/11/13
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Scalable HS algorithm

= Main idea: feed small groups of users U into
GreedyShaving Procedure (previous HS alg. )

Algorithm 4 FastGreedy Algorithm for Fraud detection.
Given bipartite multigraph G(U, V, E).

To consider temporal and

L = get first several left singular vectors « #star information, we
for all LK) € L do matricize tenor into a matrix
Rank source nodes U decreasingly on Lk) tima hins
(k) _ (k) « _1_
(%) = truncate u € U when L;,’ < Wil o
GreedyShaving with initial U, it
end for 3} unfold
return the best A* with maximized objective HS(A¥),
and the rank of v € V by fa*(v) - P(v]A"). et

(product, time bins)

2017/11/13 33



Scalable HS alg is sub-quadratic # of nodes

= Theorem 2 (algorithm complexity)

Given |V| = O(|U]|) and |E| = O(|U|¢?),
the time complexity of FastGreedy is subquadratic,

o(|U|?) in little-o notation,

if [T®)| < |U|e, where € > max{1.5,-2-}

'3—60

= In real life graph, if ¢, < 1.6, so we can limit |U(k)| < |U|Y/1e

2017/11/13 34



Outline

m Experiments
= Conclusion
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Data sets

Table 1: Data Statistics

Data Name #nodes #edges | time span
BeerAdvocate 26.5K x 50.8K | 1.07M | Jan 08 - Nov 11
Yelp 686K x 85.3K 2.68M Oct 04 - Jul 16
Amazon Phone & Acc | 2.26M x 329K | 3.45M | Jan 07 - Jul 14
Amazon Electronics 4.20M x 476K | 7.82M | Dec 98 - Jul 14
Amazon Grocery 763K x 165K 1.29M | Jan 07 - Jul 14
Amazon mix category | 1.08M x 726K | 2.72M | Jan 04 - Jun 06

Data sets are published by [J McAuley and J Leskovec, RecSys’13] [J
McAuley and J Leskovec, WWW’13] [A Mukherjee et al, WWW’12]

2017/11/13
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Performance on injected labels

= Mimic fraudsters to inject edges, time stamps
and #stars, with different fraudulent density

BeerAdvocate Data
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We use two quantitative metrics for

comparison

1. “auc”: the area under the curve of the accuracy curve

2. lowest detection
density (L.D.D.): the

density that a method 2
can detect in high §

accuracy ("> 90%"). 50-4
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Performance on injected labels by mimicking

source nodes sink nodes

Data Name metrics” ["M-Zoom | D-Cube | CrossSpot HS M-Zoom | D-Cube | CrossSpot HS

auc 0.7280 0.7353 0.2259 0.9758 0.6221 0.6454 0.1295 0.9945
BeerAdvocate F>90% 0.5000 0.5000 - 0.0333 0.5000 0.5000 - 0.0333

auc 0.9019 0.9137 0.9916 0.9925 0.9709 0.8863 0.0415 || 0.9950
Yelp F>90% 0.2500 0.2000 0.0200 0.0143 0.0250 1.0000 - 0.0100 |
Amazon auc 0.9246 0.8042 0.0169 0.9691 0.9279 0.8810 0.0515 0.9823
Phone & Acc | F>90% 0.1667 0.5000 - 0.0200' 0.1429 0.1000 - 0.0200'
Amazon auc 0.9141 0.9117 0.0009 0.9250 0.9142 0.7868 0.0301 0.9385
Electronics F>90% 0.2000 0.1250 - 0.1000 0.1000 0.5000 - 0.1250
Amazon auc 0.8998 0.8428 0.0058 0.9250 0.8756 0.8241 0.0200 0.9621
Grocery F>90% 0.1667 0.5000 - 0.1000 0.1250 0.2500 - 0.1000
Amazon auc 0.9001 0.8490 0.5747 0.9922 0.9937 0.9346 0.0157 0.9950
mix category | F>90% 0.2500 0.5000 0.2000" 0.0167 0.0100 0.2000 - 0.0100

* the performance is very stable when b larger than 32.

= HS achieved the best auc, and even reached the testing

upper bound (0.9950) in two cases

m HS has L.D.D. as small as 200/14000=0.0143 on source

nodes, the minimum test density 0.01 on sink nodes.
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Performance on real labels from online system

= Sina Weibo is a microblog and Twitter-like website

* 2.75 M users, 8.08 M messages, and 50.1 M edges in our
data of Dec 2013
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Scalability

2017/11/13
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Outline

m Conclusion
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Conclusion and taking away

= HoloScope:

* Fraud detection on (user, object, timstamp, #stars)

= Unification of signals
* topology, temporal spikes, and rating deviation
= Theoretical analysis of fraudsters’ obstruction
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More information about HoloScope

= Most data sets is publicly available

m Source code
* https://github.com/shenghua-liu/HoloScope

2017/11/13
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