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Abstract

Predicting cascade dynamics has important implications for
understanding information propagation and launching viral
marketing. Previous works mainly adopt a pair-wise manner,
modeling the propagation probability between pairs of users
using n2 independent parameters for n users. Consequently,
these models suffer from severe overfitting problem, espe-
cially for pairs of users without direct interactions, limiting
their prediction accuracy. Here we propose to model the cas-
cade dynamics by learning two low-dimensional user-specific
vectors from observed cascades, capturing their influence and
susceptibility respectively. This model requires much less pa-
rameters and thus could combat overfitting problem. More-
over, this model could naturally model context-dependent
factors like cumulative effect in information propagation. Ex-
tensive experiments on synthetic dataset and a large-scale mi-
croblogging dataset demonstrate that this model outperforms
the existing pair-wise models at predicting cascade dynamics,
cascade size, and “who will be retweeted”.

Introduction
Social media is revolutionizing the dissemination of infor-
mation via its great ease in information delivery, accessing
and filtering. In social media, users could post original mes-
sages or forward messages that they see from other users.
Information propagation proceeds along social relationships
between users, explicit or implicit, forming cascade dynam-
ics. Modeling and predicting the cascade dynamics has im-
portant implications to understanding information propaga-
tion and launching viral marketing in social media. The key
for this problem is inferring the interpersonal influence be-
tween users or estimating the probability that information
propagates between them, fundamental to influence maxi-
mization (Kempe, Kleinberg, and Tardos 2003; Chen, Wang,
and Yang 2009; Cheng et al. 2013), social recommenda-
tion (Huang et al. 2012; Ma, King, and Lyu 2009), and vi-
ral marketing (Richardson and Domingos 2002; Leskovec,
Adamic, and Huberman 2007).

Existing studies mainly aim to determine the propaga-
tion probability of information between all pairs of users,
based on structure of social network, the record of infor-
mation cascade, and demographic/content characteristics of
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users. Kempe et al. (Kempe, Kleinberg, and Tardos 2003)
implemented the independent cascade model for informa-
tion propagation, assuming a uniform propagation probabil-
ity or a degree-modulated propagation probability. Goyal et
al. (Goyal, Bonchi, and Lakshmanan 2010) provided two
static models in terms of Bernoulli distribution and Jac-
card index, and learned temporal factors to maximize like-
lihood of cascades. Saito et al. (Saito, Nakano, and Kimura
2008) learned the propagation probability for independent
cascade model in terms of expectation maximization of cas-
cades. Artzi et al. (Artzi, Pantel, and Gamon 2012) estimated
the propagation probability by exploiting demographic and
content characteristics. These methods all adopt a pair-wise
manner, modeling the propagation probability between pairs
of users using n2 independent parameters for n users. Con-
sequently, these models suffer from severe overfitting prob-
lem, limiting their prediction accuracy. For example, for a
pair of users without observed interactions, these methods
take the propagation probability between them as zero, in-
dicating that it is never happened to propagate information
between the two users in the future. To the best of our knowl-
edge, we lack a model that could concisely model the in-
terpersonal influence and accurately predict the cascade dy-
namics in large-scale social networks.

In this paper, we propose to model the cascade dynamics
by learning two low-dimensional latent vectors for each user
from observed cascades, capturing her influence and suscep-
tibility respectively. In this latent influence and susceptibility
(LIS) model, the propagation probability that one user for-
wards a piece of information is determined by the product of
her activated neighbors’ influence vectors and her own sus-
ceptibility vector. The benefits of this model are three-fold:
(1) It directly models user-specific influence and susceptibil-
ity, instead of the interpersonal influence between all pairs
of users. Thus it requires much less parameters, and pairs of
users are no longer independent, effectively combating the
overfitting problem for pairs of users without direct interac-
tions; (2) It could naturally capture context-dependent fac-
tors like cumulative effect in information propagation. For
a target user, context means her previous exposures to the
same message. In this model, one user’s previous exposures
to a message improve the probability that she propagates the
message, flexibly combining the benefits of both cascade
model and threshold model; (3) It is applicable to scenar-
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ios with explicit or implicit social networks, since it learns
user-specific influence and susceptibility from the observed
information cascades rather than the underlying social net-
works like many existing methods.

We evaluate the proposed LIS model by extensive ex-
periments on synthetic dataset and a large-scale microblog-
ging dataset from Sina Weibo, the largest social media in
China. Compared with several widely-used methods that
work in pair-wise manner, LIS model consistently outper-
forms them at predicting the dynamics of cascades. More-
over, the learned user-specific influence and susceptibility
vectors provide us a quantitative way to understand topic-
related interpersonal influence in information propagation.

Problem formulation
In this paper, we focus on the problem of inferring users’
influence and susceptibility from detailed records of mes-
sage cascades. Before diving into the details of the proposed
model, we first clarify the two main motivations underlying
our model.

First, existing models suffer from severe overfitting prob-
lem, especially for the pair of users without direct interac-
tions. As shown in Fig. 1(a), when messages are forwarded
by users along social links among them, not all social links
matter in these message cascades. For example, no forward-
ing behavior occurs between users u1 and u4, although they
have direct social link. In this case, existing models take
the propagation probability between them as zero, implying
that it is never happened to propagate information between
the two users in the future. This overfitting problem is actu-
ally caused by the hypothesis of existing models: interper-
sonal influence between different pairs of users is indepen-
dent of each other. This motivates us to adopt a user-specific
manner for modeling interpersonal influence among users,
whose existence has been proved in (Aral and Walker 2012;
Aral, Muchnik, and Sundararajan 2009). Specifically, each
user u is modeled by two non-negative d-dimensional vec-
tors: an influence vector Iu and a susceptibility vector Su,
characterizing the influence and susceptibility of user u over
d latent topics. For a pair of user (u, v), the interpersonal
influence of u on v could be simply computed by the scalar
product of Iu and Sv . This concise representation requires
only 2nd (� n2) parameters for n users.

Second, the role of context in information propagation is
rarely captured. Existing models mostly assume that users
are memoryless, i.e., whether a user forwards one message
is not affected by her previous exposures to the message.
Indeed, this assumption is not supported by empirical obser-
vations from real cascades of messages. Fig. 1(b) depicts the
relationship between the number of times k that one user is
exposed to a message and the probability that the user will
forward the message when she is exposed to the message
for the k-th time. As the number of exposures increases, the
forwarding probability increases accordingly: from 0.008
when the number of exposures is 1 to 0.261 when the num-
ber of exposures is 5. This observation clearly demonstrates
that cumulative effect does exist in information propagation,
an effect also observed in many other scenarios (Bao et al.

(a) (b)

Figure 1: Motivations underlying our model. (a) Example
of cascades to illustrate the overfitting problem suffered
by pair-wise models; (b) Relationship between forwarding
probability and number of exposures (observed from Sina
Weibo, Jan. 1-15, 2011).

2013a; Leskovec, Adamic, and Huberman 2007). This mo-
tivates us to adopt a context-dependent way to model the
cumulative effect.

Given a message m, we denote its cascade Cm with a
chronological list of activated users (am1 , . . . , a

m
N ), where

users are ranked in the ascending order of the time they for-
ward the message m. Whenever one user is activated (i.e.,
she posts or forwards the message), she has one chance to at-
tempt to activate other users. Whether her attempt succeeds
depends on the cascade context at that time.

Cascade context: When one user ami (i = 1, . . . , N ) be-
comes activated and she attempts to activate a user v, the
cascade context for this attempt is defined as

Dm
v,i = {amj |j ≤ i, δ(amj , v) = 1}, (1)

where the indicator function δ(u, v) means whether v could
be exposed to the message from u. In other words, cascade
context means v’s previous exposures to the message from
other users.

In practice, it is difficult to exactly determine δ(u, v) since
there is no reliable mechanism to know whether user v is
exposed to a message forwarded by user u, even when di-
rect social link exists between them. In this paper, we cir-
cumvent this problem using a delegate of the function δ,
i.e., the aggregate diffusion network of historical cascades
of messages. Detailed discussions about diffusion network
are given in experiments on real dataset. Diffusion network
characterizes the actual flow of information between users
in the past, providing us a good approximation for potential
information propagation in the future. More importantly, dif-
fusion network is always embedded in the collection of mes-
sage cascades while social network is not explicitly available
in many scenarios. Therefore, the proposed model is gener-
ally applicable to the scenarios with or without explicit so-
cial network.

With the above notations, we now model cascade dy-
namics of messages. For a message m with the cas-
cade (am1 , . . . , a

m
N ), each user could be denoted by an N -

dimensional status vector zmv , with its element zmv,j indicat-
ing whether the user v is in activated status right after she
is exposed to the message m from user amj . If user v be-
comes activated when she is exposed to the messagem from
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Figure 2: Graphical representation of the proposed model.

user amj , we have zmv,i = 0 (1 ≤ i < j) and zmv,i = 1
(j ≤ i ≤ N). If v keeps inactivated during the cascade dy-
namics of message m, zmv,i = 0 for any i.

The likelihood of zmv is written as

P (zmv |δ) = p
(
zmv,0
) N∏
i=1

p
(
zmv,i|zmv,i−1,Dm

v,i, δ
)
, (2)

where zmv,0 is introduced only for simplifying the notation.
Here the first term depicts whether v is the source of message
m, defined as

p
(
zmv,0 = 1

)
=

{
1, v is the source
0, otherwise

. (3)

The second term characterizes the transition of user’s status,
formally defined as

p
(
zmv,i = 1|zmv,i−1 = 1,Dm

v,i, δ
)
= 1,

p
(
zmv,i = 1|zmv,i−1 = 0,Dm

v,i, δ
)
=

1− exp
(
−λδ

(
ami , v

)∑
u∈Dm

v,i

ITu Sv

)
,

p
(
zmv,i = 0|zmv,i−1 = 0,Dm

v,i, δ
)
=

1− p
(
zmv,i = 1|zmv,i−1 = 0,Dm

v,i, δ
)
,

(4)

where λ is a scaling factor, modulating the effect of cascade
context. The first equation implies that a user cannot become
inactivated as long as she is activated. The other two equa-
tions model how the transition probability is influenced by
cascade context, reflected by a cumulative manner of inter-
personal influence. The factor δ(ami , v) determines whether
the user v could be exposed to the message m from user
ami . For clarity, we give a graphical model representation in
Fig. 2 to illustrate the process that user v’s status changes
with the dynamics of message m.

Assuming independent cascades, the likelihood of all cas-
cades C is a product of the likelihoods given by Eq. (2)

L (C) =

|C|∏
m=1

∏
v∈V

P (zmv |δ) . (5)

The parameters of the model are learned by minimizing
the negative logarithmic likelihood, namely loss function, of
all the collection of cascades as the following objective func-
tion

L(C) = −
|C|∑
m=1

∑
v∈V

N∑
i=1

log p
(
zmv,i|zmv,i−1,Dm

v,i, δ
)
. (6)

Algorithm 1 Parameter estimation
Input: Collection of cascades observed in a given time period,
the maximum epoch M , and regularization parameters γI and
γS
Output: User-specific influence and susceptibility I , S

Construct diffusion network δ from cascades
Initialize parameters with random values, including I , S
repeat

for i = 1 to n do
Calculate gradients ∂L̂

/
∂Iu and ∂L̂

/
∂Sv

end for
Update I and S with PG method

until maximum epoch M is reached or gradients vanish

Note that p
(
zmv,0
)

is always 1, hence omitted in Eq. (6).

Parameter estimation
In this section, we develop algorithm to estimate the param-
eters of the proposed model. Generally speaking, parame-
ter estimation could be completed via directly minimizing
Eq. (6) with respect to I and S. However, the huge num-
ber of possible configurations of cascade contexts in Eq. (6)
results in high computational cost. Indeed, one cascade con-
text could repeatedly occur in many cascades, causing huge
duplicated computation of Eq. (4).

Here we propose to reduce the duplicated computation
by taking advantage of overlapped cascade contexts among
multiple cascades. Firstly, we introduce some symbols to
simplify the optimization. Let P(v) be the set of possible
configurations of cascade contexts pertaining to v, occurred
in all cascades. For example, as shown in Fig. 1(a), {u1},
{u2} and {u1, u2} are all the cascade contexts for user u5.
We group cascade contexts in terms of users and re-organize
the logarithmic likelihood in Eq. (6) as
L(C)=−

∑
v∈V

∑
Dv,i∈
P(v)

(
nzv,i,Dv,i

log p (zv,i|zv,i−1,Dv,i, δ)
)
, (7)

where Dv,i refers to one configuration of cascade context
for user v, independent of specific cascade, and nzv,i,Dv,i

counts the frequency of the configuration Dv,i emerged in
all cascades, relative to user v’s status zv,i.

Parameters estimated by directly minimizing the logarith-
mic likelihood in Eq. (7) may suffer from overfitting prob-
lem, a common problem in likelihood maximization estima-
tion. To combat this problem, we regularize the parameter
vectors I and S and obtain the final objective function for
parameter estimation

L̂(C)=−
∑
v∈V

∑
Dv,i∈
P(v)

(
nzv,i,Dv,i

log p (zv,i|zv,i−1,Dv,i, δ)
)

+ γI‖I‖2F + γS‖S‖2F ,
s.t. Iij ≥ 0, Sij ≥ 0,∀i, j,

(8)

where γI and γS are regularization parameters, and ‖ · ‖F is
Frobenius norm.

Finally, using Projected Gradient (PG) method (Lin
2007), we develop an iterative algorithm for parameter es-
timation, leveraging the gradients with respect to I and S
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as
∂L̂
∂Iu

=−λ
∑
v∈V

Sv

∑
Dv,i∈
P(v)

Iu∈Dv,i

(
nzv,i=1,Dv,i

1− pv,Dv,i

pv,Dv,i

− nzv,i=0,Di(v)

)
+ γIIu,

∂L̂
∂Sv

=−λ
∑
Dv,i∈
P(v)

∑
u∈Dv,i

Iu

(
nzv,u=1,Dv,u

1− pv,Dv,u

pv,Dv,u

− nzv,u=0,Dv,u

)
+ γSSv,

(9)

where I is an indicator function, and pv,Dv,i
is a concise

form of p (zv,i = 1|zv,i−1,Dv,i, δ). The algorithm for pa-
rameter estimation is described in Algorithm 1.

Experiments
We evaluate LIS model on both synthetic data and real world
data, i.e. microblogging data from Sina Weibo. Here we only
choose scalable modeling methods as baselines, i.e., expec-
tation maximization estimation (EM) (Saito, Nakano, and
Kimura 2008), static Bernoulli model (SB), and static Jac-
card model (SJ) (Goyal, Bonchi, and Lakshmanan 2010). To
reduce the overfitting problem suffered from these models,
we apply matrix factorization (MF) method (Salakhutdinov
and Mnih 2008) as a post-processing improvement, forming
a stronger baseline. We demonstrate the benefit of the LIS
model at predicting the cascade dynamics, cascade size, and
“who will be retweeted”. Finally, we analyze the topics as-
sociated with the learned user-specific latent influence and
susceptibility.

Experiments on synthetic data
To validate whether the proposed algorithm could obtain
good estimation of user-specific influence and susceptibil-
ity, we first conduct tests on synthetic data, where cascades
are generated according to parameters known a prior. These
tests also offer us some intuitions about difficulties at pre-
dicting cascade dynamics.

Experimental setup. We first generate two synthetic dif-
fusion networks: one is constructed using Barabási-Albert
(BA) model (Barabási and Albert 1999), denoted as orig-
inal network; the other is generated by shuffling the orig-
inal network (Molloy and Reed 1995), denoted as shuffle
network. We set the dimensionality of user’s influence Iu
and susceptibility Su as 5, and sample Iu and Su from
f(x) = 1/2

√
x,x ∼ U(0, 1)5, where U(0, 1) refers to a

uniform distribution. We then generate cascades over the
two networks according to our LIS model with λ = 0.01.
We take 80% of the cascades generated from original net-
work as training dataset, and the rest of cascades generated
from the original network and the cascades from the shuf-
fle network as test dataset. The two test datasets have equal
size, offering a fair comparison.

Predicting cascade dynamics. We deal with this problem
as a set of binary classification problem, predicting whether
one user will be activated under specific cascade context.
Thus we use AUC (the area of under the ROC curve) as

Table 1: Cascade dynamics prediction on synthetic data
network UB LIS SB SJ EM
original 0.659 0.654 0.607 0.618 0.561
shuffle 0.659 0.608 0.509 0.525 0.507

Table 2: Dataset statistics
training data test data

cascades period cascades period
D1 395,852 01/01-01/15 T1 160,868 01/16-01/31
D2 453,356 01/16-01/31 T2 122,509 02/01-02/05
D3 386,152 02/01-02/15 T3 145,143 02/16-02/20

the evaluation metric (Fawcett 2006). As a reference for the
performance comparison, we offer an upper bound of our
LIS model (denoted as UB): predicting cascade dynamics
according to the parameters I and S that are used to gener-
ate cascades in test data.

Results are listed in Table 1. It is seen that LIS model
consistently outperforms baselines, and its AUC value is
very close to UB, when predicting on original network. Par-
ticularly, the performance of LIS model is stable on both
original and shuffle networks, while baseline methods suffer
from much performance reduction (some even close to 0.5,
equal to random guess approach), resulted from the overfit-
ting problem of pair-wise models.

Experiments on Microblog
Dataset. The Microblog data from Sina Weibo website is
published by WISE 2012 Challenge1, spanning from Jan-
uary 1, 2011 to Feburary 15, 2011. We extract the cas-
cade records posted between January 1, 2011 and February
15, 2011, and split the extracted records into three training
datasets, i.e., D1, D2, D3, each persisting a period of half
a month. Furthermore, for each training dataset, we extract
the cascade records in the following 5 days as test, i.e., T1,
T2 and T3. We only consider the users who appear in all
the three training datasets, obtaining 199,408 users. Dataset
statistics are depicted in Table 2. We conduct an empiri-
cal study to demonstrate the severity of overfitting problem.
Over 70% of forwarding traces—historical paths for infor-
mation flows—in test data are never observed in training
data, posing a big challenge to previous pair-wise models,
when applied in real data.

Diffusion network. Exact diffusion network is hard to ob-
tain, since there is no clear clues indicating whether a user
is exposed to a message forwarded by her followee. Previ-
ous works focus on directly inferring diffusion networks,
which is not applicable to large-scale scenarios (Gomez-
Rodriguez, Leskovec, and Krause 2010; Gomez-Rodriguez,
Leskovec, and Schölkopf 2013; Du et al. 2012; Kurashima
et al. 2014). Here we estimate diffusion network according
to a large collection of historical cascades: one cascade has
a collection of forwarding traces over the period of obser-
vation, forming a directed graph. We aggregate these graphs
of all cascades into a diffusion network, providing us a good
approximation for potential information propagation in the

1http://www.wise2012.cs.ucy.ac.cy/challenge.html

480



Figure 3: Illustration of constructing diffusion network. The
left box contains three observed cascades, and the right is
their aggregated diffusion network.

future. Figure 3 gives an example to illustrate the construc-
tion of diffusion network.

Predicting cascade dynamics. We introduce the length
of cascade context l to capture user’s context-dependent
level for exploring context-dependent factors like cumula-
tive effects in information propagation. When a user decides
whether or not to forward a message, only the recent l expo-
sures take effects in cascade context. The case l = 0 implies
that users are memoryless, i.e., without cumulative effect, re-
producing the independent assumption (Kempe, Kleinberg,
and Tardos 2003). To illustrate the difference of prediction
performance at combating overfitting problem, we addition-
ally evaluate the prediction only over observed forwarding
traces. The experimental results are presented in Fig. 4. De-
spite that baselines can better handle prediction instances
over observed forwarding traces, the AUCs decrease dra-
matically when applied to the prediction over all forward-
ing traces in test data. It means that pair-wise models, even
with an improvement using matrix factorization, still suf-
fer from overfitting problem when a large proportion of for-
warding traces in test data are unobserved. LIS model shows
stable performance, indicating that it works consistently bet-
ter than baseline models, no matter whether the forwarding
traces are happened in history. Furthermore, we explore the
effects of different length of cascade context l in LIS model.
With different settings of l, LIS model performs better as the
increase of l, shown in both two types of AUCs. It agrees
with the empirical observation on cumulative effect of infor-
mation propagation (Ugander et al. 2012; Bao et al. 2013a;
Leskovec, Adamic, and Huberman 2007), and LIS model
can effectively capture the effects.

Cascade size prediction. Cascade size prediction, as a
key part of influence maximization and viral marketing, is
one of the most important applications based on modeling
cascade dynamics (Bao et al. 2013b; Shen et al. 2014). To
guarantee that all cascades propagate sufficiently from their
message sources, we only choose such cascades that are ini-
tially posted at the first day in each test data for cascade
size prediction. Starting from the true sources of cascades
in training dataset, we simulate cascade dynamics using the
learned LIS model as a prediction. We group simulated cas-
cades into bins according to their cascade size. By counting
the number of cascades in each bin, we get a vector of counts
indexed by cascade sizes. In the same way, we also get the
vector of counts from the real cascades in test data as the
ground truth, and we smooth out those size bins containing
few cascades for statistical significance. Thus the cascade

Table 4: Accuracies and MRRs of prediction of “who will
be retweeted”

LIS (l = 5) SB SJ EM

Acc(%)
T1 58.48 57.02 49.99 53.48
T2 57.61 55.05 49.65 52.23
T3 59.58 55.38 50.85 55.41

MRR
T1 0.791 0.784 0.748 0.766
T2 0.786 0.773 0.745 0.758
T3 0.797 0.775 0.752 0.775

size prediction can be evaluated by mean absolute percent-
age error (MAPE), where a smaller value indicates a bet-
ter prediction. Since the cascades are generated by simula-
tions, we repeat the prediction, recording the average val-
ues and standard deviations of MAPE in Table 3. It is seen
that all LIS models with different settings of l achieve bet-
ter MAPE values than baselines on test data, indicating LIS
model can estimate completed cascades propagation more
efficiently than pair-wise models. Particularly, the MAPEs
in test data T2 are much larger than the values in the other
two test data. One possible explanation is that these cascades
in test data T2 span Chinese New Year (from Jan. 2 to Jan.
8, 2011) when users were dominated by offline social activ-
ities. Thus, it is hardly to observe completed cascades in the
short period, resulting in unexpected performance by simu-
lating complete cascades without accounting these factors.

Prediction of “who will be retweeted”. The problem
“who will be retweeted” is a way to examine interpersonal
influence under quantitative understanding. In the scene of
multi-exposures, high interpersonal influence will have high
probability to be forwarded. LIS model provides a direct
quantitative metric for interpersonal influence by the scalar
product of Ii and Sj between user i and j. Propagation prob-
ability is another metric of interpersonal influence for tradi-
tional pair-wise models. We therefore deal with the predic-
tion task as a ranking problem of interpersonal influence.
The user with higher rank is more probable to be retweeted.
We evaluate the prediction performance by metrics of aver-
age Accuracy (Acc) of top-1 prediction and Mean Recipro-
cal Rank (MRR) (Voorhees 1999). The larger values of Acc
and MRR indicate better predictions. The results are given
in Table 4. It is seen that LIS model achieves a much bet-
ter Acc and MRR than the baselines, which indicates that
LIS model provides a more efficient perspective to inspect
interpersonal influence in information cascades.

Topic allocation in latent features To explore topic al-
location in LIS model, we select top 10,000 users for each
dimension of latent influence and susceptibility features, ac-
cording to their influence and susceptibility respectively. We
use hashtags as the topic of these messages posted by the
selected users. Messages without hashtags are discarded.
We keep 8 hashtags with statistical significance in terms of
message number. Then we calculate the distribution of each
remained hashtags in latent features according to the fre-
quency used by users. Next, we rank hashtags by the results
of distribution in latent features and utilize kendall-τ rank
correlation coefficient (Kendall 1938) to analyze the differ-
ence between pairs of features. Figure 5 shows the heat map
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(a) T1 (b) T2 (c) T3

Figure 4: AUCs of cascade dynamics prediction on microblog.

Table 3: MAPEs of cascade size prediction
LIS (l = 0) LIS (l = 3) LIS (l = 5) SB SJ EM

T1 0.163±0.0133 0.140±0.0155 0.141±0.0217 0.191±0.0190 0.524±0.0046 0.258±0.0160
T2 0.287±0.0093 0.280±0.0080 0.286±0.0065 0.333±0.0099 0.621±0.0048 0.338±0.0387
T3 0.095±0.0150 0.094±0.0150 0.097±0.0093 0.171±0.0388 0.505±0.0450 0.189±0.0112

(a) influence (b) susceptibility

Figure 5: Kendall-τ rank correlation coefficient.

of difference between pairs of features. Every grid repre-
sents the correlation between two features. The coefficient
values close to 1 or -1 refer to positive and negative corre-
lation between two features, depicted in deep blue or deep
red respectively. If two features are independent, the coeffi-
cient value approaches to 0, colored by yellow. As shown in
Fig. 5, most pairs of features are approximatively indepen-
dent in both influence and susceptibility, indicating that the
learned features are highly discriminative in topic level. Fur-
thermore, we illustrate the top 3 hashtags in latent features
shown in Table 5, containing four pairs of features and their
hashtags. The influence features 3 and 7 are coherent well
with high kendall-τ coefficients 0.93, as hashtag “Xiaomi
release” is on the top of both. Those influence and suscepti-
bility features with lower or zero kendall-τ coefficients have
distinguished hashtags.

Conclusions
In this paper, we proposed a concise probabilistic model
for the information propagation on social network, explic-
itly characterizing the influence and susceptibility of each
user with two low-dimensional vectors respectively. The
proposed model distinguishes itself from previous models
at its capability of modeling both the interpersonal influence
between any pair of users and the cumulative effect in infor-
mation propagation. We also designed effective algorithms

Table 5: Topic allocation in features

(a) two pairs of features in influence
kendall-τ feature index ranked hash tagscoefficients

0.93
3 1. Xiaomi release; 2. Tang Jun education

qualification fake; 3. House prices

7 1. Xiaomi release; 2. Qian Yunhui;
3. House prices

0
2 1. Yao Ming retire; 2. Case of running fast

car in Heibei University; 3. Xiaomi release

14 1. Xiaomi release; 2. Qian Yunhui;
3. House prices

(b) two pairs of features in susceptibility
kendall-τ feature index ranked hash tagscoefficients

0.43
6

1. Incident of self-burning at Yancheng,
Jiangsu; 2. Tang Jun education qualifica-
tion fake; 3. Yao Ming retire

11 1. Xiaomi release; 2. Qian Yunhui;
3. House prices

0
4

1. Incident of self-burning at Yancheng,
Jiangsu; 2. Tang Jun education qualifica-
tion fake; 3. Case of running fast car in
Heibei University

7 1. Qian Yunhui; 2. Incident of self-burn-
ing at Yancheng, Jiangsu; 3. House prices

to train the model based on maximizing logarithmic likeli-
hood of information cascades. Our model does not require
the knowledge of social network structure, hence having
wide applicability to the scenarios with or without explicit
social networks. We evaluated the effectiveness of our model
on synthetic dataset and a large-scale microblogging dataset
from Sina Weibo, the largest social media in China. Ex-
perimental results demonstrate that our model consistently
outperforms existing methods at predicting cascade dynam-
ics, cascade size, and “who will be retweeted”. Moreover,
the learned user-specific influence and susceptibility vectors
provide us a quantitative way to understand topic-related in-
terpersonal influence in information propagation.
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