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ABSTRACT
As online fraudsters invest more resources, including purchasing

large pools of fake user accounts and dedicated IPs, fraudulent at-

tacks become less obvious and their detection becomes increasingly

challenging. Existing approaches such as average degree maximiza-

tion suffer from the bias of including more nodes than necessary,

resulting in lower accuracy and increased need for manual verifica-

tion. Hence, we propose HoloScope, which introduces a novel met-

ric “contrast suspiciousness” integrating information from graph

topology and spikes to more accurately detect fraudulent users

and objects. Contrast suspiciousness dynamically emphasizes the

contrast patterns between fraudsters and normal users, making

HoloScope capable of distinguishing the synchronized and anoma-

lous behaviors of fraudsters on topology, bursts and drops, and

rating scores. In addition, we provide theoretical bounds for how

much this increases the time cost needed for fraudsters to conduct

adversarial attacks. Moreover, HoloScope has a concise framework

and sub-quadratic time complexity, making the algorithm repro-

ducible and scalable. Extensive experiments showed that HoloScope

achieved significant accuracy improvements on synthetic and real

data, compared with state-of-the-art fraud detection methods.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies → Anomaly detection;
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1 INTRODUCTION
Online fraud has become an increasingly serious problem due to

the high profit it offers to fraudsters, which can be as much as

$5 million from 300 million fake “views” per day, according to a

report of Methbot [28] on Dec 2016. Meanwhile, to avoid detection,

fraudsters can manipulate their geolocation, internet providers, and

IP address, via large IP pools (852,992 dedicated IPs). Suppose a
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fraudster has a accounts or IPs, and serves a customer who buys

200 ratings or clicks for each of his products. Since the fraudster has

to add 200 ratings to each product out of a possible a ratings, the

density of the fraudulent block created is 200/a. We thus see that

with enough user accounts or IPs, the fraudster can serve as many

products as he needs while keeping density low. This presents a

difficult challenge for most existing fraud detection methods.

Due to the lack of labeled data in fraud detection, unlike email

spam detection, many studies on fraud detection use unsupervised

approaches, i.e. dense block detection. Current dense block detec-

tion methods [5, 35, 36] maximize the arithmetic or geometric aver-

age degree. We use “fraudulent density” to indicate the edge density

that fraudsters create for target objects. However, those methods

have a bias of including more nodes than necessary, especially as

the fraudulent density decreases, which we verified empirically.

This bias results in low precision, which then requires intensive

manual work to verify each user. Fraudar [13] proposed an edge

weighting scheme based on inverse logarithm of objects’ degrees

to reduce this bias, which was inspired by IDF [32, 37]. However,

their weighting scheme is fixed globally and affects both suspicious

and normal edges, lowering the precision of Fraudar, which can be

seen from results on semi-real (with injected labels) and real data

(see Fig. 1).

Accurately detecting fraudulent blocks of lower density requires

aggregating more sources of information [12, 14, 35]. Consider the

attribute of the creation time of edges: fraudulent attacks tend to

be concentrated in time, e.g., fraudsters may surge to retweet a

message, creating one or more sudden bursts of activity [9, 40],

followed by sudden drops after the attack is complete. Sudden

bursts and drops have not been directly considered together in

previous work.

Therefore, we propose HoloScope, an unsupervised approach,

which combines suspicious signals from graph topology, temporal

bursts and drops, and rating deviation. Our graph topology-based

weighting scheme dynamically reweights objects according to our

beliefs about which users are suspicious. Temporally, HoloScope

detects suspicious spikes of bursts and drops, which increases the

time cost needed for fraudsters to conduct an attack. In terms

of rating deviation, our approach takes into account how much

difference there is between an object’s ratings given by suspicious

users and non-suspicious users.

In summary, our contributions are:

• Novel suspiciousness metric: we propose a dynamic con-
trast suspiciousness metric, which emphasizes the contrast

behaviors between fraudsters and honest users in an unsu-

pervised way. At the same time, the contrast suspiciousness

provides a unified suspiciousness framework, which can
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Figure 1: (a) and (b) show experimental results on BeerAdvocate dataset. The better methods are able to detect fraud with high accuracy,
even when fraudulent density (plotted on the horizontal axis) is low. HS-α and HS are both ourmethods, where the former only uses topology
information.We increase the # of injected fraudsters from200 to 2000 forHS-α , and to 20000 forHS, while the decreasing density of fraudulent
edges is shown on the horizontal axis from right to left. Comparing with HS-α , HS who makes holistic use of several signals achieves further
improvement. (c) shows accuracy (F measure of precision and recall) results on Sina Weibo, with ground truth labels.

make holistic use of several signals including, but not lim-

ited to, connectivity (i.e., topology), temporal bursts and

drops, and rating deviation in a systematic way.

• Robustness and theoretical analysis of fraudsters’ ob-
struction: we show that if the fraudsters use less than a

theoretical bound of time for an attack, they will cause a sus-

picious drop or burst. In other words, HoloScope obstructs

fraudsters by increasing the time they need to perform an

attack. This theorem guarantees temporal robustness: no

matter how the fraudsters manipulate the creation time of

fraudulent links, they will be caught if the attack takes less

than a fixed amount of time.

• Effectiveness: we achieved higher accuracy than the base-

lines on semi-real and real datasets. In fact, HoloScope using

only topology information (HS-α ) outperformed the graph-

based baselines (see Fig. 1a), while HoloScope (HS) using all

signals achieved further improvement, and outperformed

the tensor-based baselines (see Fig. 1b and 1c). The dynamic

weighting on object nodes by contrast suspiciousness makes

both HS-α and HS resistant to fraudsters’ camouflage and

achieve better detection accuracy.

• Scalability: HoloScope runs in subquadratic time in the

number of nodes, under reasonable assumptions. Fig. 2 shows

that its running time increases near-linearly with the number

of edges.

In addition, in Microblog, Sina Weibo
1
data, HoloScope achieved

higher F-measure than the baselines in detecting the ground truth

labels, with high precision and recall. The code of HoloScope is

open-sourced for reproducibility
2
.

2 RELATEDWORKS
Most existing works study fraud detection in an unsupervised way

due to the limited labels, which are based on the density of blocks

1
The largest Microblog service in China, http://www.weibo.com

2
https://github.com/shenghua-liu/HoloScope
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Figure 2: HoloScope (HS) runs in near-linear time.

Table 1: Comparison between HoloScope and other fraud detection
algorithms.
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within adjacency matrices [18, 31], or multi-way tensors [35, 36].

OddBall [2] found new rules and patterns in the distribution of

eigenvalues for anomaly detection. In stead of detecting density

block by average degree [5], [10] and CoreScope [34] proposed to
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use Shingling and K-core algorithms respectively to detect anoma-

lous dense block in huge graphs. Taking into account the suspi-

ciousness of each edge or node in a real life graph potentially allows

for more accurate detection. Fraudar [13] proposed to weight edges’

suspiciousness by the inverse logarithm of objects’ indegrees, to

discount popular objects. [3] found that the degrees in a large

community follow a power law distribution, forming hyperbolic

structures. This suggests penalizing high degree objects to avoid

unnecessarily detecting the dense core of hyperbolic community.

The spikes on degree distributions were studied, and synchronized

behaviors were detected in [16, 17]. Deep neural network methods

are used for anomaly detection [20, 23], but these are black-box

approaches that provide little interpretability about the detected

output.

In addition to topological density, EdgeCentric [33] studied the

distribution of rating scores to find the anomaly. In terms of tem-

poral attribute, the identification of burst period has been studied

in [21]. A recent work, Sleep Beauty (SB) [19] more intuitively

defined the awakening time for a paper’s citation burst for burst

period. [39] detected the outliers of time series as the changing

point. [41] clustered the temporal patterns of text phrases and hash

tags in Twitter, and [27, 30] studied the temporal dynamics of net-

works separately on ego-network and network motifs. Meanwhile,

[11, 12] modeled the time stamped rating scores with Bayesian

model and autoregression model respectively for anomalous be-

havior detection. Even though [7, 22, 40] have used bursty patterns

to detect review spam, a sudden drop in temporal spikes has not

been considered yet. [40] detected spam reviews in singleton re-

views, where each spammer only writes one or fewer reviews in

the system. The algorithms found the common period in which

multiple time series have bursts, including the time series of ratios

of singleton reviewers. We solve a different fraud detection problem

that spammers have to reuse the limited accounts to create as many

fake reviews as possible, which needs to find suspicious signals

from topological connections at the same time.

Aggregating suspiciousness signals from different attributes is

challenging for unsupervised learning. [6] proposed RRF (Recipro-

cal Rank Fusion) scores for combining different rank lists in infor-

mation retrieval. However, RRF applies to ranks, not suspiciousness

scores. Without explicitly aggregation, researchers used the tensor-

based methods to consider different attributes. CrossSpot [14, 15],

a tensor-based algorithm, estimated the suspiciousness of a block

using a Poisson model. However, it did not take into account the

difference between popular and unpopular objects. Moreover, al-

though CrossSpot, M-Zoom [35] and D-Cube [36] can consider

edge attributes like rating time and scores via a multi-way ten-

sor approach, they require a time-binning approach. When time

is split into bins, attacks which create bursts and drops may not

stand out clearly after time-binning, since each time bin is treated

as an independent dimension in the temporal way of tensor. The

problem of choosing bin widths for histograms was studied by

Sturges [38] assuming an approximately normal distribution, and

Freedman-Diaconis [8] based on statistical dispersion. However,

the binning approaches were proposed for the time series of a single

object, which is not clear for different kinds of objects in a real life

graph, namely, popular products and unpopular products should

use different bin sizes.

Belief propagation (BP) [29] is another common approach for

fraud detection which can be incorporated some specific edge at-

tributes, such as sentiments [1]. However, its robustness against

adversaries which try to hide themselves is not well understood.

Based on the same idea of BP, CopyCatch [4] detected lockstep

behavior by maximizing the number of edges in blocks constrained

within time windows. However, this approach ignores the distri-

bution of edge creation times within the window, and does not

capture bursts and drops directly.

Finally, we summarize the previous baselines compared to our

HoloScope in Table 1. We use “hy-community” to indicate whether

the method can avoid detecting the naturally-formed hyperbolic

topology that is unnecessary (false positive) for fraud detection.

We can see that HoloScope is the only one which considers all the

property list, especially including temporal spikes (sudden bursts

and drops, andmultiple bursts) and hyperbolic topology, in a unified

suspiciousness framework.

3 PROPOSED APPROACH
The definition of our problem is as follows.

Problem 1 (informal definition). Given quadruplets (user ,
object , timestamp, #stars ), where timestamp is the time that a user
rates an object , and #stars is the categorical rating scores.

- Find a group of suspicious users, and suspicious objects or its
rank list with suspiciousness scores,

- to optimize the metric under the common knowledge of sus-
piciousness from topology, rating time and scores.

To make the problem more general, timestamp and #stars are
optional. For example, in Twitter, we have (user ,object ,timestamp)
triples, where user retweets a message object at timestamp. In a

static following network, we have pairs (user ,object ), with user
following object .

As discussed in previous sections, our metric should capture the

following basic traits.

First, the fraudsters need to create as many fake reviews as they

can to boost fraudulent products.

Trait 1 (Engagement). Fraudsters engage as much firepower as
possible to boost customers’ objects, i.e., suspicious objects.

Second, as [13] suggested, a popular object by many people is

not likely a fraudulent object. In other words, suspicious objects

attract less attention from ordinary users due to their low quality.

Then we have:

Trait 2 (Less Involvement). Suspicious objects seldom attract
non-fraudulent users to connect with them.

Third, fraudsters conduct their attacks in a short period of time,

creating temporal spikes with bursts and sudden drops, as reported

in previous works [9, 40].

Trait 3 (Spikes: Bursts and Drops). Fraudulent attacks are
concentrated in time, sometimes over multiple waves of attacks, cre-
ating bursts of activity. Conversely, the end of an attack corresponds
to sudden drops in activity.
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Finally, the rating distribution of fraudsters differs greatly from

those of typical users, as observed by [33]. This occurs because

fraudsters are aiming to manipulate the rating of products.

Trait 4 (Rating Deviation). The rating behavior of fraudsters
deviates greatly from the rating behavior of normal users.

Thus we will show in the following sections, that our proposed

metric can make holistic use of several signals, namely topology,

temporal spikes, and rating deviation, to locate suspicious users

and objects satisfying the above traits. That is the reason we name

our method as HoloScope (HS).

3.1 HoloScope metric
To give a formal definition of our metric, we describe the quadru-

plets (user , object , timestamp, #stars) as a bipartite and directed

graph G = {U ,V ,E}, whichU is the source node set, V is the sink

node set, and connections E is the directed edges fromU toV . Gen-

erally, graph G is a multigraph, i.e., multiple edges can be present

between two nodes. Multiple edges mean that a user can repeat-

edly comment or rate on the same product at a different time, as

common in practice. Users can also retweet message multiple times

in the Microblog Sina Weibo. Each edge can be associated with

rating scores (#stars), and timestamp, for which the data structure

is introduced in Subsection 3.1.2.

Our HoloScope metric detects fraud from three perspectives:

topology connection, timestamp, and rating score. To easily un-

derstand the framework, we first introduce the HoloScope in a

perspective of topology connection. Afterwards, we show how we

aggregate the other two perspectives into the HoloScope. We first

view G as a weighted adjacency matrix M, with the number of

multiple edges (i.e., edge frequency) as matrix elements.

Our goal is to find lockstep behavior of a group of suspicious

source nodesA ⊂ U who act on a group of sink nodes B ⊂ V . Based

on Trait 1, the total engagement of source nodes A to sink nodes B
can be basically measured via density measures. There are many

density measures, such as arithmetic and geometric average degree.

Our HoloScope metric allows for any such measure. However, as

the average degree metrics have a bias toward including too many

nodes, we use a measure denoted by D (A,B) as the basis of the

HoloScope, defined as:

D (A,B) =

∑
vi ∈B fA (vi )

|A| + |B |
(1)

where fA (vi ) is the total edge frequency from source nodes A to a

sink node vi . fA (vi ) can also be viewed as an engagement from A
to vi , or A’s lockstep on vi , which is defined as

fA (vi ) =
∑

(uj ,vi )∈E∧uj ∈A

σji · eji (2)

where constant σji is the global suspiciousness on an edge, which

can be equal to 1 if no extra global suspiciousness is assigned to

a node pair (uj ,vi ). We are going to propose a way to assign the

suspiciousness in section 3.1.2. eji is the element of adjacency ma-

trix M, i.e., the edge frequency between a node pair (uj ,vi ). The
edge frequency eji becomes a binary in a simple graph. The global

suspiciousness as a prior can come from the degree, and the extra

Figure 3: An intuitive view of our definitions in the HoloScope.

knowledge on fraudsters, such as duplicated review sentences and

unusual behaving time.

To maximize D (A,B), the suspicious source nodes A and the

suspicious sink nodes B are mutually dependent. Therefore, we

introduce contrast suspiciousness in an informal definition:

Definition 3.1 (contrast suspiciousness). The contrast suspicious-
ness denoted as P (vi ∈ B |A) is defined as the conditional likelihood
of a sink node vi that belongs to B (the suspicious object set), given

the suspicious source nodes A.

A visualization of the contrast suspiciousness is given in Fig. 3.

The intuitive idea behind contrast suspiciousness is that in the most

case, we need to judge the suspiciousness of objects by currently

chosen suspicious users A, e.g., an object is more suspicious if very

few users not inA are connected to it (see Trait 2); the sudden burst

of an object is mainly caused by A (see Trait 3); or the rating scores

fromA to an object are quite different from other users (see Trait 4).

Therefore, such suspiciousness makes use of the contrasts between

users in A and users not in A or the whole set.

Finally, instead of maximizing D (A,B), we maximize the follow-

ing expectation of suspiciousness D (A,B) over the probabilities

P (vi ∈ B |A):

max

A
HS (A) := E [D (A,B)]

=
1

|A| +
∑
k ∈V

P (vk |A)

∑
i ∈V

fA (vi )P (vi |A) (3)

where for simplicity we write P (vi |A) to mean P (vi ∈ B |A). 1 −
P (vi |A) is the probability of vi being a normal sink node. We dy-

namically calculate the contrast suspiciousness for all the objects,

after every choice of source nodes A.
Using this overall framework for our proposed metric HS (A),

we next show how to satisfy the remaining Traits. To do this, we

define contrast suspiciousness P (vi |A) in a way that takes into

account various edge attributes. This will allow greater accuracy

particularly for detecting low-density blocks.

3.1.1 HS-α : Less involvement from others. Based on Trait 2, a

sink node should be more suspicious if it only attracts connections

from the suspicious source nodes A, and less from other nodes.

Mathematically, we capture this by defining

P (vi |A) ∝ q(αi ), where αi =
fA (vi )

fU (vi )
(4)
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where fU (vi ) is the weighted indegree of sink node vi . Similar to

fA (vi ), the edges are weighted by global suspiciousness. αi mea-

sures the involvement ratio ofA in the activity of sink node vi . The
scaling function q(·) is our belief about how this ratio relates to

suspiciousness, and we choose the exponential form q(x ) = bx−1,
where base b > 1.

As previous work showed, large communities form hyperbolic

structures, which is generated in our synthetic data (see the lower-

right block in Fig. 4a), and also exists in real BeerAdvocate data

(see Fig. 4b). For clarity, our HoloScope method are denoted as

HS-α when it is only applied on a connection graph. The results

of the synthetic data show that HS-α detected the exact dense

rectangular block (b = 128), while the other methods included

a lot of non-suspicious nodes from the core part of hyperbolic

community resulting in low accuracy. In the beer review data from

the BeerAdvocate website, testing on different fraudulent density

(see Fig. 1a), our HS-α remained at high accuracy, while the other

methods’ accuracy drops quickly when the density drops below

70%.

The main idea is that HS-α can do better because it dynamically

adjusts the weights for sink nodes, penalizing those sink nodes

that also have many connections from other source nodes not

in A. In contrast, although Fraudar proposed to penalize popular

sink nodes based their indegree, these penalties also scaled down

the weights of suspicious edges. The Fraudar (green box) only

improved the unweighted “average degree” method (red box) by a

very limited amount. Moreover, with a heavier penalty, the “sqrt

weight” method (blue box) achieved better accuracy on source

nodes but worse accuracy on sink nodes, since those methods used

globally fixed weights, and the weights of suspicious were penalized

as well. Hence the hyperbolic structure pushes those methods to

include more nodes from its core part.

In summary, our HS-α using dynamic contrast suspiciousness

can improve the accuracy of fraud detection in ‘noisy’ graphs (con-

taining hyperbolic communities), even with low fraudulent density.

3.1.2 Temporal bursts and drops. Timestamps for edge creation

are commonly available in most real settings. If two subgroups of

Microblog users have the same number of retweets to a message,

can we say they have the same suspiciousness? As an example

shown in Fig. 5a, the red line is the time series (histogram of time

bins) of the total retweets of a message in Microblog, Sina Weibo.

The blue dotted line and green dashed line are the retweeting time

series respectively from user groupsA1 andA2. The two series have

the same area under the time series curves, i.e., the same number

of retweets. However, considering that fraudsters tend to surge to

retweet a message to reduce the time cost, the surge should create

one or more sudden bursts, along with sudden drops. Therefore,

the suspiciousness of user groupsA1 andA2 become quite different

even though they have the same number of retweets, which cannot

be detected solely based on connections in the graph. Thus we

include the temporal attribute into our HoloScope framework for

defining contrast suspiciousness.

Denote the list of timestamps of edges connected to a sink node

v as Tv . To simplify notation, we use T without subscript when

talking about a single given sink nodev . Let T ={(t0, c0), (t1, c1), · · · ,
(te , ce )} as the time series ofT , i.e., the histogram of T . The count ci
is the number of timestamps in the time bin [ti − ∆t/2,ti + ∆t/2),
with bin size ∆t . The bin size of histogram is calculated according to

the maximum of Sturges criteria and the robust Freedman-Diaconis’

criteria as mentioned in related works. It is worth noticing that the

HoloScope can tune different bin sizes for different sink nodes, e.g.,

popular objects need fine-grained bins to explore detailed patterns.

Hence, the HoloScope is more flexible than tensor based methods,

which use a globally fixed bin size. Moreover, the HoloScope can

update the time series at a low cost when T is increasing.

To consider the burst and drop patterns described in Trait 3,

we need to decide the start point of a burst and the end point of

a drop in time series T . Let the burst point be (tm , cm ), having

the maximum value cm . According to the definition in previous

work “Sleeping Beauty”, we use an auxiliary straight line from the

beginning to the burst point to decide the start point, named the

awakening point of the burst. Fig. 5b shows the time series T (red

polygonal line) of a message from SinaWeibo, the auxiliary straight

line l (black dotted line) from the lower left point (t0, c0) to upper

right point (tm , cm ), and the awakening point for the maximum

point (tm , cm ), which is defined as the point along the time series T

which maximizes the distance to l . As the dotted line perpendicular
to l suggests in this figure, the awakening point (ta ,ca ) satisfies

ta = argmax

(c,t )∈T ,t<tm

|(cm − c0)t − (tm − t0)c + tmc0 − cmt0 |√
(cm − c0)

2 + (tm − t0)
2

(5)

Finding the awakening point for one burst is not enough, as

multiple bursts may be present. Thus, sub-burst points and the

associated awakening points should be considered.We then propose

a recursive algorithmMultiBurst in Alg. 1 for such a purpose.

After finding awakening and burst points, the contrast suspi-

ciousness of burst awareness satisfies P (vi |A) ∝ q(φi ), where φi is
the involvement ratio of source nodes in A in multiple bursts. Let

the collection of timestamps from A to sink node vi be TA. Then,

φi =
Φ(TA )

Φ(TU )
, and Φ(T ) =

∑
(ta,tm )

∆cam · sam
∑
t ∈T

1(t ∈ [ta ,tm])

(6)

where sam is the slope from the output of MultiBurst algorithm.

Here sam is used as a weight based on how steep the current burst

Session 8C: Adversarial IR CIKM’17, November 6-10, 2017, Singapore

1543



6 7 8 9 10 11 12
time (s) ×105

0

50

100

150

200

250

300

350

400
# 

of
 re

tw
ee

ts

Group !" Group !#

involve more 
in sudden 
burst

sudden 
drop

(a) Group A1 is more suspicious than A2, due
to the sudden burst and drop

awakening 
points

burst 
points

dying 
point

𝑙

(𝑡$, 𝑐$)

(𝑡(, 𝑐()

(𝑡), 𝑐))

(𝑡*, 𝑐*)

(b) Detection of temporal bursts and
drops

exceed 𝑆" exceed 𝑆#

𝑆" 𝑆#
𝑐%

𝑛"∆𝑡 𝑛#∆𝑡

(c) Proof the time cost obstruction

Figure 5: (a) and (b) are the time series (histogram) of a real message being retweeted in Microblog, Sina Weibo. The horizontal axis is the
seconds after 2013 − 11 − 1. (c) illustrates our proof of time cost obstruction.

Algorithm 1MultiBurst algorithm.

Input Time series T of sink node v , beginning index i , end index j
Output A list of awakening-burst point pairs,

sam : slope of the line passing through each point pair,

∆c : altitude difference of each point pair.

If j − i < 2 then return
(tm, cm ) = point of maximum altitude between indices i and j .
(ta, ca ) = the awakening point as Eq (5) between indices i and j .
∆cam = cm − ca , and sam = ∆cam/(tm−ta )
Append {(ta, ca ), (tm, cm )}, sam , and ∆cam into the output.

MultiBurst (T , i, a − 1)
k = Find the first local min position from indicesm + 1 to j
Mult iBurst (T , k, j )

is. This definition of suspiciousness satisfies Trait 3. It is worth

noticing that theMultiBurst algorithm only needs to be executed

once. With the preprocessed awakening and burst points, the con-

trast suspiciousness of edges connected to v has O (dv ) complexity,

where dv is the degree of sink node v . Hence the complexity for

overall sink nodes are O ( |E |).
In fact, sudden drops are also a prominent pattern of fraudulent

behavior as described in Trait 3, since after creating the attack is

complete, fraudsters usually stop their activity sharply. To make

use of the suspicious pattern of a sudden drop, we define the dyinд
point as the end of a drop. As Fig. 5b suggests, another auxiliary

straight line is drawn from the highest point (tm , cm ) to the last

point (te , ce ). The dying point (td , cd ) can be found by maximizing

the distance to this straight line. Thus we can discover the “sudden

drop” by the absolute slope value sbd=(cm − cd )/(td − tm ) between the

burst point and the dying point. Since there may be several drops in

a fluctuated time series T , we choose the drop with the maximum

fall. To find the maximum fall, we also need a recursive algorithm,

similar to Alg. 1:

1) Find amaximum point (tm , cm ), and the corresponding dying

point (td , cd ) by definition;

2) Calculate the current drop slope sbd , and the drop fall ∆cbd
= cm − cd ;

3) Recursively find drop slope and drop fall for the left and

right parts of T , i.e., t < tm and t ≥ td respectively.

As a result, the algorithm returns the maximum drop fall ∆cbd ,
and its drop slope sbd , which it has found recursively. Finally, we

use the weighted drop slope as a global suspiciousness in equation

(2) to measure the drop suspiciousness, i.e.

σ = ∆cbd · sbd (7)

for every edge connected to the sink node v , and we omit the

subscripts of nodes for simplicity.

With this approach to detect bursts and drops, we now show

that this provides a provable time obstruction for fraudsters.

Theorem 3.2. Let N be the number of edges that fraudsters want
to create for an object. If the fraudsters use time less than τ ≥√

2N∆t (S1+S1 )
S1 ·S1 , then they will be tracked by a suspicious burst or

drop, where ∆t is the size of time bins, and S1 and S2 are the slopes of
normal rise and decline respectively.

Proof. The most efficient way to create N edges is to have one

burst and one drop, otherwise more time is needed. As shown in

Fig. 5c, in order to minimize the slope, every point in the time

series should in line with the two auxiliary straight lines to the

highest point cm , separately from the awakening and dying points.

Otherwise, the slopes will exceed the normal values S1 and S2.
Hence we only consider the triangle with the auxiliary lines as its

two edges. It is worth noticing that a trapezoid whose legs have

the same slopes as the triangle’s edges cannot have a shorter time

cost. Then

cm
n1∆t

= S1,
cm
n2∆t

= S2, (n1 + n2) · cm = 2N ′.

Here n1 and n2 are the number of time bins before and after the

burst. N ′ is the total number of rating edges, and N ′ ≥ N consider

some edges from normal users. Thus, solving the above equations,

we have

τ = (n1 + n2)∆t =

√
2N ′∆t (S1 + S2)

S1 · S2
≥

√
2N∆t (S1 + S2)

S1 · S2

■
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We also have the height of burst, cm ≥
√

2N∆tS1S2
S1+S2 . Thus, the

maximum height of time series T cannot be larger by far than that

of a normal sink node. That is the reason that we use the weighted

φi in equation (6) and weighted drop slope in equation (2).

3.1.3 Rating deviation and aggregation. We now consider edges

with categorical attributes such as rating scores, text contents, etc.

For each sink node vi , we use the KL-divergence κi between the

distributions separately from the suspicious source nodesA and the

other nodes, i.e., U \A. We use U \A for KL-divergence instead of

the whole source nodes U , in order to avoid the trivial case where

most of the rating scores are from A. The rating deviation κi is
scaled into [0,1] by the maximum value before being passed into

functionq(·) to compute contrast suspiciousness. The neutral scores

can be ignored in the KL-divergence for the purpose of detecting

fraudulent boosting or defamation. Moreover, rating deviation is

meaningful when bothA andU \A have the comparable numbers of

ratings. Thus, we weighted κi by a balance factor,min{ fA (vi )/fU \A (vi ),
fU \A (vi )/fA (vi ) }.

To make holistic use of different signals, i.e., topology, temporal

spikes, and rating deviation, we need a way to aggregate those

signals together. As far as we know, there are few approaches

that can be used for aggregation in an unsupervised framework.

We have tried to use RRF (Reciprocal Rank Fusion) scores from

Information Retrieval, and wrapped the scores with and without

scaling function q(x ). Compared to RRF score, we found that a

natural way of using joint probability was the most effective way

to aggregate, i.e. multiplying those signals together:

P (vi |A) = b
αi+φi+κi−3, (8)

In such a way, we can consider the absolute suspicious value of

each signal, as opposite to the only use of ranking order. Moreover,

being wrapped with q(x ), the signal values cannot be canceled out

by multiplying a very small value from other signals. A concrete

example is that a suspicious spike can still keep a high suspicious-

ness score by multiplying a very small score from low fraudulent

density.

Moreover, HoloScope dynamically updates the contrast suspi-

ciousness P (vi |A). Thus the sink nodes being added with camou-

flage will have a very low contrast suspiciousness, with respect to

the suspicious source nodesA. This offers HoloScope the resistance
to camouflage.

3.2 Algorithm
Before designing the full algorithm for large scale datasets, we

firstly introduce the most important sub-procedureGreedyShavinд
in Alg. 2.

At the beginning, this greedy shaving procedure starts with an

initial set A0 ⊂ U as input. It then greedily deletes source nodes

from A, according to users’ scores S:

S (uj ∈ A) =
∑

vi :(uj ,vi )∈E

σ ji · eji · P (vi |A),

which can be interpreted as how many suspicious nodes that user

uj is involved in. So the user is less suspicious if he has a smaller

score, with respect to the current contrast suspiciousness P, where

we use P to denote a vector of contrast suspiciousness of all sink

Algorithm 2 GreedyShavinд Procedure.

Given bipartite multigraph G (U ,V , E ),
initial source nodes A0 ⊂ U .

Initialize:

A = A0

P= calculate contrast suspiciousness given A0

S = calculate suspiciousness scores of source nodes A.
MT = build priority tree of A with scores S.

while A is not empty do
u = pop the source node of the minimum score from MT .
A = A \ u , delete u from A.
Update P with respect to new source nodes A.
Update MT with respect to new P.

A∗ = source nodes A that has the best objective HS (A∗) so far.

end while
return A∗ and P (v |A∗), v ∈ V .

nodes. We build a priority tree to help us efficiently find the user

with minimum score. The priority tree updates the users’ scores

and maintains the new minimum as the priorities change. With

removing source nodes A, the contrast suspiciousness P change,

in which we then update users’ scores S. The algorithm keeps

reducing A until it is empty. The best A∗ maximizing objective HS
and P (v |A∗) are returned at the end.

Since awakening and burst points have been already calculated

for each sink node as an initial step before the GreedyShavinд
procedure, the calculation of the contrast suspicious P (v |A) for a
sink node v only needs O ( |A|) time. With source node j as the j-th
one removed from A0 by theGreedyShavinд procedure, |A0 | =m0,

and the out degree as di , the complexity is∑
j=2, · · · ,m0

O (dj · (j − 1) · logm0) = O (m0 |E0 | logm0) (9)

where E0 is the set of edges connected to source nodes A0.

With the GreedyShavinд procedure, our scalable algorithm can

be designed so as to generate candidate suspicious source node sets.

In our implementation, we use singular vector decomposition (SVD)

for our algorithm. Each top singular vector gives a spectral view of

high connectivity communities. However, those singular vectors

are not associated with suspiciousness scores. Thus combined with

the top singular vectors, our fast greedy algorithm is given in Alg. 3.

Algorithm 3 FastGreedy Algorithm for Fraud detection.

Given bipartite multigraph G (U ,V , E ).
L = get first several left singular vectors

for all L (k ) ∈ L do
Rank source nodes U decreasingly on L (k )

Ũ (k )
= truncate u ∈ U when L (k )

u ≤ 1√
|U |

GreedyShavinд with initial Ũ (k )
.

end for
return the best A∗ with maximized objective HS (A∗),

and the rank of v ∈ V by fA∗ (v ) · P (v |A∗).

Theorem 3.3 (Algorithm complexity). In the graph G (U ,V ,E),
given |V | = O ( |U |) and |E | = O ( |U |ϵ0 ), the complexity of FastGreedy
algorithm is subquadratic, i.e., o( |U |2) in little-o notation, if the size
of truncated user set |Ũ (k ) | ≤ |U |

1/ϵ , where ϵ > max{1.5, 2

3−ϵ0 }.
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Proof. The FastGreedy algorithm executesGreedyShavinд in a

constant iterations. A0 is assigned to Ũ
(k )

in everyGreedyShavinд

procedure. Thenm0 = |A0 | = |Ũ
(k ) |. In the adjacency matrixM of

the graph, we consider the submatrixM0 with A0 as rows andV as

columns. If the fraudulent dense block is in submatrixM0, then we

assume that the block has at most O (m0) columns. Excluding the

dense block, the remaining part ofM0 is assumed to have the same

density with the whole matrixM. Therefore, the total number of

edges inM0 is

O ( |E0 |) = O (m2

0
+
m0 · |E |

|U |
) = O ( |U |

2/ϵ + |U |
1/ϵ−1 |E |)

Then based on equation (9), the algorithm complexity is

O (m0 |E0 | logm0) = O (( |U |
3/ϵ + |U |

2/ϵ−1+ϵ0 ) log |U |)

Therefore, if ϵ > max{1.5, 2

3−ϵ0 }, then the complexity is sub-

quadratic o( |U |2). ■

In real life graph, ϵ0 ≤ 1.6, so if ϵ > 1.5 the complexity of

FastGreedy algorithm is subquadratic. Therefore, without loss of

performance and efficiency, we can limit |Ũ (k ) | ≤ |U |
1/1.6

for trun-

cating an orderedU in the FastGreedy algorithm for a large dataset.

In FastGreedy algorithm for HS-α , SVD on adjacency matrixM
is used to generate initial blocks for the GreedyShavinд procedure.

Although we can still use SVD onM for HS with holistic attributes,

yet considering attributes of timestamps and rating scores may

bring more benefits. Observing that not every combination of # of

stars, timestamps and product ids has a value in a multi-way tenor

representation, we can only choose every existing triplets (object ,
timestamp, #stars) as one column, and user as rows, to form a new

matrix. The above transformation is called thematricization of a

tensor, which outputs a new matrix. With proper time bins, e.g.,

one hour or day, and re-clustering of #stars , the flattening matrix

becomes more dense and contains more attribute information. Thus

we use such a flattening matrix with each column weighted by the

sudden-drop suspiciousness for our FastGreedy algorithm.

4 EXPERIMENTS
In the experiments, we only consider the significant multiple bursts

for fluctuated time series of sink nodes. We keep those awakening-

burst point pairs with the altitude difference ∆c at least 50% of

the largest altitude difference in the time series. Table 2 gives the

statistics of our six datasets which are publicly available for aca-

demic research
3
. Our extensive experiments showed that the per-

formance was insensitive to scaling base b, and became very stable

when larger than 32. Hence we choose b = 32 in the following

experiments.

4.1 Evaluation on different injection density
In the experiments, we mimic the fraudsters’ behaviors and ran-

domly choose 200 objects with indegree no more than 100 as the

fraudsters’ customers, since less popular objects are more suscepti-

ble to manipulation. On the other hand, the fraudulent accounts can

come from the hijacked user accounts. Thus we uniformly sample

out a number of users as fraudsters from the whole user set. To test

on different fraudulent density, the number of sampled fraudsters

3
Yelp dataset is from https://www.yelp.com/dataset_challenge

Table 2: Data Statistics

Data Name #nodes #edges time span

BeerAdvocate [25] 26.5K x 50.8K 1.07M Jan 08 - Nov 11

Yelp 686K x 85.3K 2.68M Oct 04 - Jul 16

Amazon Phone & Acc [24] 2.26M x 329K 3.45M Jan 07 - Jul 14

Amazon Electronics [24] 4.20M x 476K 7.82M Dec 98 - Jul 14

Amazon Grocery [24] 763K x 165K 1.29M Jan 07 - Jul 14

Amazon mix category [26] 1.08M x 726K 2.72M Jan 04 - Jun 06

ranges from 200 to 20,000. Those fraudsters as a whole randomly

create 200 fake edges to each of the 200 products. As a results, the

fraudulent density ranges from 1.0 to 0.01 for testing. The rating

time is generated for each fraudulent edge: first randomly choose a

start time between the earliest and the latest creation time of the

existing edges; and then plus a randomly and biased time interval

sampled from intervals of the exiting creation time, to mimic the

surge of fraudsters’ attacks. Besides, a high rating score, e.g. 4 or

4.5, is randomly chosen for each fraudulent edge
4
. At the same

time, we also add camouflage to other product nodes with the same

number of fraudulent edges.

Fig. 1a shows the results of HS-α on the BeerAdvocate data,

compared with Fraudar and SpokEn that only consider topology

information as HS-α does. To detect fraudsters of a low density

is much harder than that of a high density, so the better methods

are able to detect fraudsters of lower density with a high accuracy.

Since HS-α only considers the topology information in our novel

contrast suspiciousness, we compare HS-α with the baselines based

on graph topology. When the fraudulent density decreases from

the right to the left along the horizontal axis, HS-α can detect

fraudulent density as low as 0.125 in a high F measure, better than

0.8 which is the best of the baselines.

Fig. 1b shows the results of HoloScope HS, which uses topology,

temporal and rating attributes. Comparing to those baselines on

the same kinds of attributes, HS can keep as high F measure as

more than 90% before reaching 0.033 in density, better by far than

the baseline methods (0.50 in density). In other words, to create

the same amount of fraudulent edges, HS can detect fraud with

high accuracy even when fraudsters use 6,000 source nodes (user

accounts). On the other hand, the best of the baselines detects in a

low accuracy (less than 50%) even when only 600 source nodes are

used, which is easier to detect. Besides, HS using several signals

further improves over HS-α with only topology signal (compared

with Fig. 1a) by decreasing density from 0.125 to 0.033 with high

detection accuracy.

In order to give a comparison on all six data sets with different

injection density, we propose to use the twometrics: a low-case “auc”

and the lowest detection density, described in the notes of Table 3.

The table reports the fraud detection results of our HoloScope (HS)

and the baselines on the six datasets. Since the accuracy curve stops

at 0.01 (the minimum testing density); and we add zero accuracy

at zero density, the ideal value of auc is 0.995. The auc on source

and sink nodes are reported separately. In terms of sink nodes,

HS outputs the rank list by suspiciousness scores, we use the area

under the upper-case AUC (similar to F-measure) accuracy curve

4
the injection code is also open-sourced for reproducibility
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Table 3: Experimental results on real data with injected labels

Data Name metrics*

source nodes sink nodes

M-Zoom D-Cube CrossSpot HS M-Zoom D-Cube CrossSpot HS

BeerAdvocate

auc 0.7280 0.7353 0.2259 0.9758 0.6221 0.6454 0.1295 0.9945
F≥90% 0.5000 0.5000 – 0.0333 0.5000 0.5000 – 0.0333

Yelp

auc 0.9019 0.9137 0.9916 0.9925 0.9709 0.8863 0.0415 0.9950
F≥90% 0.2500 0.2000 0.0200 0.0143 0.0250 1.0000 – 0.0100

Amazon auc 0.9246 0.8042 0.0169 0.9691 0.9279 0.8810 0.0515 0.9823
Phone & Acc F≥90% 0.1667 0.5000 – 0.0200† 0.1429 0.1000 – 0.0200†

Amazon auc 0.9141 0.9117 0.0009 0.9250 0.9142 0.7868 0.0301 0.9385
Electronics F≥90% 0.2000 0.1250 – 0.1000 0.1000 0.5000 – 0.1250

Amazon auc 0.8998 0.8428 0.0058 0.9250 0.8756 0.8241 0.0200 0.9621
Grocery F≥90% 0.1667 0.5000 – 0.1000 0.1250 0.2500 – 0.1000
Amazon auc 0.9001 0.8490 0.5747 0.9922 0.9937 0.9346 0.0157 0.9950
mix category F≥90% 0.2500 0.5000 0.2000

† 0.0167 0.0100 0.2000 – 0.0100
* we use the two metrics: the area under the curve (abbrev as low-case “auc”) of the accuracy curve as drawn in Fig. 1b, and the lowest detection
density that the method can detect in high accuracy (F measure ≥ 90%).

†
one of the above fraudulent density was not detected in high accuracy.

along all testing density. As the table suggests, our HS achieved the

best auc among the baselines, and even reached the ideal auc in

two cases.

Furthermore, we compare the lowest detection density in Table 3.

The better a method is, the lower density it should be able to detect

well. As we can see, HS has the smallest detection density in most

cases, which can be as small as
200/14000= 0.0143 on source nodes,

and reached the minimum testing density of 0.01 on sink nodes.

That means we can detect fraudsters in high accuracy even when

they use 14 thousand accounts to create fake edges for each of 200

objects, due to the holistic use of signals in contrast suspiciousness

framework. The fraudulent objects can also be detected accurately.

4.2 Evaluation on Sina Weibo with real labels
We also did experiments on a large real dataset from Sina Weibo,

which has 2.75 million users, 8.08 million messages, and 50.1 million

edges in Dec 2013. The user names and ids, and message ids are

from the online system. Thus we can check their existence status

in the system to evaluate the experiments. If the messages or the

users were deleted from the system, we treat them as the basis for

identifying suspicious users and messages. Since it is impossible to

check all of the users and messages, we firstly collected a candidate

set, which is the union of the output sets from the HS and the

baseline methods. The real labels are from the candidate set by

checking the status whether they still exists in Sina Weibo (checked

in Feb. 2017). We used a program on the API service of Sina Weibo

to check the candidate user and message id lists, finally resulting

in 3957 labeled users and 1615 labeled messages.

The experimental results in Fig. 1c show that HS achieved high F-

measure on accuracy, which detected 3781 labeled users higher than

M-Zoom’s 1963 labeled users. The F-measure of HS improved about

30% and 60%, compared with M-Zoom and D-Cube respectively.

CrossSpot biased to include a large amount of users (> 500,000) in

their detection results, which recalled less than 150 extra labeled

users, getting very low F-measure, less than 1.5%. In terms of mes-

sages, the HS achieved around 0.8 in AUC from the ranking list

of the results, while M-Zoom and D-Cube got lower recall, and

CrossSpot still suffered from very low F-measure with many false

positive messages. Therefore, our HoloScope outperformed the

baselines in real-labeled data as well.

4.3 Scalability
To verify the complexity, we choose two representative datasets:

BeerAdvocate data which has the highest volume density, and Ama-

zon Electronics which has the most edges. We truncated the two

datasets according to different time ranges, i.e., from the past 3

months, 6 months, or several years to the last day, so that the gen-

erated data size increases. Our algorithm is implemented in Python.

As shown in Fig. 2, the running time of our algorithm increases

almost linearly with the number of the edges.

5 CONCLUSION
In conclusion, we proposed a fraud detection method, HoloScope,

on a bipartite graph which can have timestamps and rating scores.

HoloScope has the following advantages: 1)Novel suspiciousness
metric:we propose a dynamic contrast suspiciousnessmetric, which

emphasizes the contrast in behavior between fraudsters and honest

users in terms of topology, temporal spikes, and rating deviation.

Including the temporal and rating information, HS performs even

better than HS-α that only considers topology. Moreover, the uni-

fied suspiciousness framework can integrate more signals easily in

a natural way, e.g. the divergence of topic distributions between text

reviews from fraudsters and honest users. 2) Robustness and the-
oretical analysis of fraudsters’ obstruction: we showed that if

the fraudsters use less than a lower bound of time to rate an object,

they will cause a suspicious drop or burst. The robustness is guaran-

teed that no matter how the fraudsters manipulate the rating pace

in a less time cost, they will be caught suspicious. In other words,

our HoloScope can obstruct fraudsters and increases their time

cost. 3) Effectiveness: we achieved higher accuracy on both semi-

real and real datasets than the baselines under the circumstance

of camouflage. 4) Scalability: under reasonable assumptions, the

algorithm is sub-quadratic in the number of nodes.
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