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Abstract. Money laundering (ML) is the behavior to conceal the source
of money achieved by illegitimate activities, and always be a fast pro-
cess involving frequent and chained transactions. How can we detect
ML and fraudulent activity in large scale attributed transaction data
(i.e. tensors)? Most existing methods detect dense blocks in a graph or a
tensor, which do not consider the fact that money are frequently trans-
ferred through middle accounts. CubeFlow proposed in this paper is a
scalable, flow-based approach to spot fraud from a mass of transactions
by modeling them as two coupled tensors and applying a novel multi-
attribute metric which can reveal the transfer chains accurately. Exten-
sive experiments show CubeFlow outperforms state-of-the-art baselines
in ML behavior detection in both synthetic and real data.

1 Introduction

Given a large amount of real-world transferring records, including a pair of ac-
counts, some transaction attributes (e.g. time, types), and volume of money, how
can we detect money laundering (ML) accurately in a scalable way? One of com-
mon ML processes disperses dirty money into different source accounts, transfers
them through many middle accounts to destination accounts for gathering in a
fast way. Thus the key problem for ML detection are:

Informal Problem 1. Given a large amount of candidates of source, middle,
and destination accounts, and the transferring records, which can be formalized
as two coupled tensors with entries of (source candidates, middle candidates,
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Coupled output subtensors

Fig. 1. An example of ML detection. Two coupled input tensors indicate a money flow
from X to Y to Z. Modes X,Y and Z denote the candidates of source, middle and
destination accounts. The purpose of detection is to find two dense coupled blocks in
original coupled tensors, i.e., catching fraudsters involving in two-step ML activities.

time, · · · ), and (middle candidates, destination candidates, time, · · · ), how
to find the accounts in such a ML process accurately and efficiently.

Fig. 1 shows an example of ML detection with two coupled tensors indicating
a flow from source to middle to destination accounts. Those candidates can
be pre-selected by existing feature-based models or in an empirical way. For
example, in a bank, we can let source candidates simply be external accounts
with more money transferring into the bank than out of the bank, destination
candidates be the opposite ones, and middle candidates be the inner accounts.

Most existing dense subtensor detection methods [6,18,19] have been used for
tensor fraud detection, but only can deal with one independent tensor. There-
fore, they exploit exactly single-step transfers, but do not account for “transfer
chains”. Such methods based on graph’s density [5,14,17], have the same problem
and even not be able to leverage multi-attributes. Although, FlowScope [12] de-
signed for dense and multi-step flow, it fails to take into account some important
properties (e.g. time) because of the limits by the graph.

Therefore, we propose CubeFlow, a ML detection method with coupled
tensors. CubeFlow not only considers the flow of funds (from sources, through
middle accounts, to destinations), but also can combine some attributes, such as
transferring time to model fraudsters’ highly frequent transfers. We define a novel
multi-attribute metric for fraudulent transferring flows of ML. CubeFlow con-
siders the suspicious in-and-out balance for middle accounts within short time
intervals and detects the chain of fraudulent transfers accurately. The experi-
ments on real-world datasets show that CubeFlow detects various adversarial
injections and real ML fraudsters both with high accuracy and robustness.

In summary, the main advantages of our work are:

• Multi-attribute metric for money-laundering flow: We propose a
novel multi-attribute metric for detecting dense transferring flows in coupled
tensors, which measures the anomalousness of typical two-step laundering with
suspicious in-and-out balance for middle accounts within many short time inter-
vals.
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• Effectiveness and robustness: CubeFlow outperforms baselines under
various injection densities by descending the amount of money or ascending #
of accounts on real-world datasets. And CubeFlow shows its robustness in
different proportions of accounts with better accuracy.
• Scalability: CubeFlow is scalable, with near-linear time complexity in

the number of transferring records.
Our code and processed data are publicly available for reproducibility 4.

2 Related Work

Our work pulls from two main different fields of research: (i) domain-specific ML
detection methods; and (ii) general anomaly detection methods in graphs and
tensors.

Money laundering detection. The most classical approaches for Anti-ML
are those of rule based classification relying heavily on expertise. Khan et al. [9]
used Bayesian network designed with guidance of the rules to assign risk scores
to transactions. The system proposed by [10] monitored ongoing transactions
and assessed their degree of anomaly. However, rule based algorithms are easy
to be evaded by fraudsters. To involve more attributes and handle the high-
dimensional data, machine learning models such as SVM [21], decision trees [22]
and neural networks [15] are applied, while these methods are focused on isolated
transaction level. Stavarache et al. [20] proposed a deep learning based method
trained for Anti-ML tasks using customer-to-customer relations. However, these
algorithms detect the ML activities in supervised or semi-supervised manners,
suffering from imbalanced class and lack of adaptability and interpretability.

General-purpose anomaly detection in graphs and tensors. Graphs
(i.e. tensors) provide a powerful mechanism to capture interrelated associations
between data objects [1], and there have been many graph-based techniques de-
veloped for discovering structural anomalies. SpokEn [17] studied patterns in
eigenvectors, and was applied for anomaly detection in [8] later. CatchSync [7]
exploited two of the tell-tale signs created by fraudsters. And many existing
methods rely on graph (i.e. tensor)’s density, e.g., Fraudar [5] proposed a suspi-
ciousness measure on the density, HoloScope [13,14] considered temporal spikes
and hyperbolic topology and SpecGreedy [3] proposed a unified framework based
on the graph spectral properties. D-Cube [19], M-Zoom [18] and CrossSpot [6]
adopted greedy approximation algorithms to detect dense subtensors, while CP
Decomposition (CPD) [11] focused on tensor decomposition methods. However,
these methods are designed for general-purpose anomaly detection tasks, which
not take the flow across multiple nodes into account.

3 PROBLEM FORMULATION

In general money laundering (ML) scenario, fraudsters transfer money from
source accounts to destination accounts through several middle accounts in order

4 https://github.com/BGT-M/spartan2-tutorials/blob/master/CubeFlow.ipynb
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Table 1. Notations and symbols

Symbol Definition

P(X,Y,A3, . . . , AN , V ) Relation representing the tensor which stands money trans
from X to Y

Q(Y,Z,A3, . . . , AN , V ) Relation representing the tensor which stands money trans
from Y to Z

N Number of mode attributes in P (or Q)
An n-th mode attribute name in P (or Q)
V measure attribute (e.g. money) in P (or Q)

BP (or BQ) a block(i.e. subtensor) in P (or Q)
Px, Py, Qz,Pan set of distinct values of X,Y, Z,An in P (or Q)
Bx,By, Bz, Ban set of distinct values of X,Y, Z,An in BP (or BQ)
Mx,y,a3,...,aN (BP) attribute-value mass of (x, y, a3, . . . , aN ) in (X,Y,A3, . . . , AN )
My,z,a3,...,aN (BQ) attribute-value mass of (y, z, a3, . . . , aN ) in (Y,Z,A3, . . . , AN )

ωi Weighted assined to a node in priority tree
g(BP,BQ) Metric of ML anomalousness

[3, N ] {3, 4, . . . , N}

to cover up the true source of funds. Here, we summarize three typical charac-
teristics of money laundering:

Density: In ML activities, a high volume of funds needs to be transferred
from source to destination accounts with limited number of middle accounts.
Due to the risk of detection, fraudsters tend to use shorter time and fewer trad-
ing channels in the process of ML which will create a high-volume and dense
subtensor of transfers.

Zero out middle accounts: The role of middle accounts can be regarded
as a bridge in ML: only a small amount of balance will be kept in these accounts
for the sake of camouflage, most of the received money will be transferred out.
This is because the less balances retained, the less losses will be incurred if these
accounts are detected or frozen.

Fast in and Fast out: To reduce banks’ attention, “dirty money” is always
divided into multiple parts and transferred through the middle accounts one by
one. The “transfer”, which means a part of fund is transferred in and out of a
middle account, is usually done within a very short time interval. This is because
the sooner the transfer is done, the more benefits fraudsters will get.

Algorithms which focus on individual transfers, e.g. feature-based approaches,
can be easily evaded by adversaries by keeping each individual transfer looks nor-
mal. Instead, our goal is to detect dense blocks in tensors composed of source,
middle, destination accounts and other multi-attributes, as follows:

Informal Problem 2 (ML detection with coupling tensor). Given two money
transfer tensors P(X,Y,A3, . . . , AN , V ) and Q(Y, Z,A3, . . . , AN , V ), with at-
tributes of source, middle and destination candidates as X,Y, Z, other coupling
attributes (e.g. time) as An, and a nonnegative measure attribute (e.g. volume
of money) as V .

Find: two dense blocks (i.e. subtensor) of P and Q.
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Such that:
- it maximizes density.
- for each middle account, the money transfers satisfy zero-out and fast-in-

and-fast-out characteristics.

Symbols used in the paper are listed in Table 1. As common in other lit-
erature, we denote tensors and modes of tensors by boldface calligraphic let-
ters(e.g. P) and capital letters(e.g. X,Y, Z,An) individually. For the possible
values of different modes, boldface uppercase letters (e.g. Px,Py,Qz,Pan) are
used in this paper. Since P(X,Y,A3, . . . , AN , V ) and Q(Y, Z,A3, . . . , AN , V ) are
coupled tensors sharing the same sets of modes Y,An, we have Py = Qy and
Pan

= Qan
. Our targets, the dense blocks (i.e. subtensor) of P and Q, are rep-

resented by BP and BQ. Similarly, the mode’s possible values in these blocks are
written as Bx,By,Bz,Ban . An entry (x, y, a3, . . . , aN ) indicates that account x
transfers money to account y when other modes are equal to a3, . . . , aN (e.g.
during a3 time-bin), and Mx,y,a3,...,aN

(BP) is the total amount of money on the
subtensor.

4 Proposed Method

4.1 Proposed Metric

First, we give the concept of fiber: A fiber of a tensor P is a vector obtained by
fixing all but one P’s indices. For example, in ML process with A3 representing
transaction timestamp, total money transferred from source accounts X into a
middle account y at time-bin a3 is the mass of fiber P(X, y, a3, V ) which can
be denoted by M:,y,a3(BP), while total money out of the middle account can be
denoted by My,:,a3

(BQ).

In general form, we can define the minimum and maximum value between
total amount of money transferred into and out of a middle account y ∈ By with
other attributes equal to a3 ∈ Ba3

, . . . , aN ∈ BaN
:

fy,a3,...,aN
(BP,BQ) = min{M:,y,a3,...,aN

(BP),My,:,a3,...,aN
(BQ)} (1)

qy,a3,...,aN
(BP,BQ) = max{M:,y,a3,...,aN

(BP),My,:,a3,...,aN
(BQ)} (2)

Then we can define the difference between the maximum and minimum value:

ry,a3,...,aN
(BP,BQ) = qy,a3,...,aN

(BP,BQ)− fy,a3,...,aN
(BP,BQ) (3)

Next, our ML metric is defined as follows for spotting multi-attribute money-
laundering flow:
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Definition 1. (Anomalousness of coupled blocks of ML) The anomalousness of
a flow from a set of nodes Bx, through the inner accounts By, to another subset
Bz, where other attribute values are an ∈ Ban :

g(BP,BQ) =

∑
y∈By,ai∈Bai

(
(1− α)fy,a3,...,aN

(BP,BQ)− α · ry,a3,...,aN
(BP,BQ)

)
∑N

i=3(|Bai
|) + |Bx|+ |By|+ |Bz|

=

∑
y∈By,ai∈Bai

(
fy,a3,...,aN

(BP,BQ)− αqy,a3,...,aN
(BP,BQ)

)
∑N

i=3(|Bai
|) + |Bx|+ |By|+ |Bz|

(4)

Intuitively, fy,a3,...,aN
(BP) is the maximum possible flow that could go through

middle account y ∈ By when other attributes are an ∈ Ban . ry,a3,...,aN
(BP,BQ)

is the absolute value of “remaining money” in account y after transfer, i.e., re-
tention or deficit, which can be regarded as a penalty for ML, since fraudsters
prefer to keep small account balance at any situations. When we set A3 as time
dimension, we consider the “remaining money” in each time bin which will catch
the trait of fast in and fast out during ML. We define α as the coefficient of im-
balance cost rate in the range of 0 to 1.

4.2 Proposed Algorithm: CubeFlow

We use a near-greedy algorithm CubeFlow, to find two dense blocks BP and
BQ maximizing the objective g(BP,BQ) in (4).

To develop an efficient algorithm for our metric, we unfold the tensor P on
mode-X and Q on mode-Z. For example, a tensor unfolding of P ∈ R|Bx|×|By|×|Ba3 |

on mode-X will produce a |Bx| × (|By| × |Ba3
|) matrix.

For clarity, we define the index set I, whose size equals to the number of
columns of matrix:

I = By on Ba3 on . . . on BaN
(5)

where on denotes Cartesian product. Therefore, the denominator of (4) can be
approximated by |Bx|+ |I|+ |Bz|.

First, we build a priority tree for entries in BP and BQ. The weight (ie.
priority) assigned to index i is defined as:

ωi(BP,BQ) =

fi(BP,BQ)− αqi(BP,BQ), if i ∈ I
Mi,:,:,...,:(BP), if i ∈ Bx

M:,i,:,...,:(BQ), if i ∈ Bz

(6)

The algorithm is described in Alg 1. After building the priority tree, we
perform the near greedy optimization: block BP and BQ start with whole tensor
P and Q. Let we denote I ∪Bx ∪Bz as S. In every iteration, we remove the node
v in S with minimum weight in the tree, approximately maximizing objective
(4); and then we update the weight of all its neighbors. The iteration is repeated

until one of node sets Bx,Bz, I is empty. Finally, two dense blocks B̂P, B̂Q that

we have seen with the largest value g(B̂P, B̂Q) are returned.
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Algorithm 1: CubeFlow

Input: relation P, relation Q
Output: dense block BP, dense block BQ

1 BP ← P, BQ ←Q;
2 S← I ∪Bx ∪Bz;
3 ωi ← calculate node weight as Eq. (6) ;
4 T ← build priority tree for BP and BQ with ωi(BP,BQ) ;
5 while Bx,Bz and I is not empty do
6 v ← find the minimum weighted node in T;
7 S← S\{v};
8 update priorities in T for all neighbors of v;
9 g(BP,BQ)← calculate as Eq. (4);

10 end

11 return B̂P, B̂Q that maximizes g(BP,BQ) seen during the loop.

5 Experiments

We design experiments to answer the following questions:

• Q1. Effectiveness: How early and accurate does our method detect syn-
thetic ML behavior comparing to the baselines?

• Q2. Performance on real-world data: How early and accurate does our
CubeFlow detect real-world ML activity comparing to the baselines?

• Q3. Performance on 4-mode tensor: How accurate does CubeFlow
compare to the baselines dealing with multi-mode data?

• Q4. Scalability: Does our method scale linearly with the number of edges?

Table 2. Dataset Description

Name Volume # Tuples

3-mode bank transfer record (from acct, to acct, time, money)

CBank
491295× 561699× 576 2.94M
561699× 1370249× 576 2.60M

CFD-3
2030× 2351× 728 0.12M
2351× 7001× 730 0.27M

4-mode bank transfer record (from acct, to acct, time, k symbol, money)

CFD-4
2030× 2351× 728× 7 0.12M
2351× 7001× 730× 8 0.27M

5.1 Experimental Setting

Machine: We ran all experiments on a machine with 2.7GHZ Intel Xeon E7-
8837 CPUs and 512GB memory.
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Data: Table 2 lists data used in our paper. CBank data is a real-world
transferring data from an anonymous bank under an NDA agreement. Czech
Financial Data (CFD) is an anonymous transferring data of Czech bank released
for Discovery Challenge in [16]. We model CFD data as two 3-mode tensors
consisting of entries (a1, a2, t, m), which means that account a1 transfers the
amount of money, m, to account a2 at time t. Specifically, we divide the account
whose money transferring into it is much larger than out of the account into
X, on the contrary, into Z, and the rest into Y . Note that it does not mean
that X,Y, Z have to be disjoint, while this preprocessing helps speed up our
algorithm. We also model CFD data as two 4-mode tensors having an additional
dimension k Symbol (characterization of transaction, e.g., insurance payment
and payment of statement). And we call two CFD data as CFD-3 and CFD-4
resp.

Implementations: We implement CubeFlow in Python, CP Decompo-
sition(CPD) [11] in Matlab and run the open source code of D-Cube [19], M-
Zoom [18]and CrossSpot [6]. We use the sparse tensor format for efficient space
utility. Besides, the length of time bins of CBank and CFD are 20 minutes and
3 days respectively, and the value of α is 0.8 as default.

5.2 Q1.Effectiveness

To verify the effectiveness of CubeFlow, we inject ML activities as follows:
fraudulent accounts are randomly chosen as the tripartite groups, denoted by Bx,
By and Bz. The fraudulent edges between each group are randomly generated
with probability p. We use Dirichlet distribution (the value of scaling parameter
is 100) to generate the amount of money for each edge. And for each account
in By, the amount of money received from Bx and that of transferred to Bz

are almost the same. Actually, we can regard the remaining money of accounts
in By as camouflage, with amount of money conforms to a random distribution
ranging from 0 to 100000 (less than 1% of injected amount of money). To satisfy
the trait “Fast in and Fast out”, we randomly choose the time from one time
bin for all edges connected with the same middle account.

The influence of the amount of money: In this experiment, the number
of Bx, By, Bz is 5, 10 and 5 resp, and we increase the amount of injected money
laundered step by step while fixing other conditions. As shown in Figure. 2(a),
CubeFlow detects the ML behavior earliest and accurately, and the methods
based on bipartite graph are unable to catch suspicious tripartite dense flows in
the tensor.

The influence of the number of fraudulent accounts: Another possible
case is that fraudsters may employ as many as people to launder money, making
the ML behavior much harder to detect. In this experiment, we increase the
number of fraudsters step by step at a fixed ratio (5 : 10 : 5) while keeping the
amount of laundering money and other conditions unchanged. As Figure. 2(b)
shown, our method achieves the best results.

Robustness with different injection ratios of accounts: To verify the
robustness of our method, we randomly pick Bx, By and Bz under three ratios
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Fig. 2. CubeFlow outperforms baselines under different injected densities by descend-
ing amount of money (a) or ascending # of accounts (b) on CFD-3 data.

Table 3. Experimental results on CFD-3 data with different injection ratios of accounts

X:Y:Z CubeFlow D-Cubegeo D-Cubeari CPD CrossSpot M-Zoomgeo M-Zoomari

5:10:5 0.940 0.189 0.553 0.641 0.015 0.455 0.553

10:10:10 0.940 0.427 0.653 0.647 0.024 0.555 0.555

10:5:10 0.970 0.652 0.652 0.725 0.020 0.652 0.652

as presented in Table 3. The metric for comparison is FAUC: the areas under
curve of F-measure as in Figure. 2. We normalize the density in horizontal axis
to scale FAUC between 0 and 1, and higher FAUC indicates better performance.
And we can see from Table 3, CubeFlow achieves far better performance than
other baselines under all settings, indicating earlier and more accurate detection
for more fraudulent accounts.

5.3 Q2. Performance on real-world data

CBank data contains labeled ML activity: based on the X to Y to Z schema,
the number of each type of accounts is 4, 12, 2. To test how accurately and early
we can detect the fraudsters in CBank data, we first scale down the percentage
of dirty money laundered from source accounts to destination accounts, then
gradually increase the volume of money laundering linearly back to the actual
value in the data. Figure. 3(a) shows that CubeFlow can the catch the ML
behaviors earliest, exhibiting our method’s utility in detecting real-world ML
activities. Note that although CPD works well at some densities, it fluctuate
greatly, indicating that CPD is not very suitable for ML behavior detection.

Flow Surprisingness estimation with extreme value theory: Inspired
by [4], we use Generalized Pareto (GP) Distribution, a commonly used prob-
ability distribution within extreme value theory, to estimate the extreme tail
of a distribution without making strong assumptions about the distribution it-
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Fig. 3. CubeFlow performs best in real CBank data. (a) CubeFlow detects earli-
est (less money being laundered) and accurately in ground-truth community. (b) The
GP distribution closely fits mass distributions of real flows: Black crosses indicate the
empirical mass distribution for flows with same size with top-1 flow detected by Cube-
Flow, in the form of its complementary CDF (i.e. CCDF).
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Fig. 4. CubeFlow outperforms the baselines under different adversarial densities by
descending the amount of money (a) or ascending # of accounts (b) on CFD-4 data.

self. GP distributions exhibit heavy-tailed decay (i.e. power law tails), which can
approximate the tails of almost any distribution, with error approaching zero [2].

Specifically, we estimate tail of GP distribution via sampling. Given a flow
corresponding to two blocks, BP, BQ, with total mass M(BP) + M(BQ), we
sample 5000 uniformly random flows from data with same size. For ε = 0.1,
we fit a GP distribution using maximum likelihood to the largest εN masses.
The surprisingness of flow is the CDF of this GP distribution, evaluated at its
mass. As shown in Figure. 3(b), masses of sampled flows follow a GP distribu-
tion and tail measure score (i.e. CDF) of top-1 flow detected by CubeFlow
is very close to 1 (pointed by red arrow), indicating that this activity is quite
extreme(i.e. rare) in CBank data.
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Fig. 5. CubeFlow scales near linearly

5.4 Q3. Performance on 4-mode tensor

To evaluate the performance of CubeFlow dealing with multi-mode data, we
conducted similar experiments on CFD-4 data. Figure. 4(a)-4(b) show that our
method takes significant advantages over the baselines as our method achieves
excellent performance far earlier.

5.5 Q4. Scalability

Scalability: We demonstrate the linearly scalability with of CubeFlow by
measuring how rapidly its update time increases as a tensor grows. As Figure. 5
shown, CubeFlow scales linearly with the size of non-zero entries.

6 Conclusion

In this paper, we propose a money laundering detection method, CubeFlow,
which is a scalable, flow-based approach to spot the fraud in big attributed
transaction tensors. We model the problem with two coupled tensors and pro-
pose a novel multi-attribute metric which can utilize different characteristics of
money-laundering flow. Experiments based on different data have demonstrated
the effectiveness and robustness of CubeFlow’s utility as it outperforms state-
of-the-art baselines. The source code is opened for reproducibility.
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