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Abstract—Graph Convolutional Networks (GCNs) have
achieved state-of-the-art performance on node classification.
However, recent works have shown that GCNs are vulnera-
ble to adversarial attacks, such as additions or deletions of
adversarially-chosen edges in the graph, in order to mislead
the node classification algorithms. How can we design robust
GCNs that are resistant to such adversarial attacks? More
challengingly, how can we do this in a way that is provably
robust? We propose a robust node classification approach based
on a low-pass ‘message passing’ mechanism, that (a) reduces
the effectiveness of adversarial attacks in experiments, and
(b) provides theoretical guarantees against adversarial attacks.
Our approach can be embedded into the existing GCN architec-
tures to enhance their robustness. Empirical results show that
our loss-pass method effectively improves the performance of
multiple GCNs under miscellaneous perturbations and helps
them to achieve superior performance on various graphs.

Keywords-Graph Convolutional Networks, Node Classifica-
tion, Robustness

I. INTRODUCTION

Node classification is a fundamental task on graph data,
which is to classify the nodes in an (attributed) graph [1]:
for example, predicting protein types in a protein inter-
action graph [2]. In recent years, graph neural network
methods such as Graph Convolutional Networks (GCNs)
have achieved state-of-the-art performance for node classi-
fication [3]–[5], leading to tremendous interest.

Despite their effectiveness for node classification, GCNs
have been found to be vulnerable to adversarial attacks [6].
This is a significant drawback in terms of their reliability
in many real-world settings, particularly in risk-sensitive
scenarios such as security, healthcare, and finance [7]. It
is thus essential to design GCNs that are robust against
adversarial attacks.

GCNs apply a ‘message passing’ mechanism to make pre-
dictions, whereby they aggregate semantic representations of
each node and its neighbors at each layer. On a clean graph
structure, this message passing process tends to produce the
similar predictions to the connected nodes [8]. However,
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when adversarial edges are present, it incurs over-whelming
erroneous information and misleads the predictions heavily.

In this paper, we propose a low-pass ‘message pass-
ing’ mechanism that provides higher robustness for GCNs
without the loss of effectiveness. The mechanism weakens
‘message passing’ between semantically dissimilar nodes.
We design this mechanism based on the observation that
node pairs which are very semantically different are the
most susceptible to being attacked by the adversary, as
perturbations across such pairs have a stronger effect on
the prediction results. Therefore, by weakening the ‘message
passing’ between dissimilar nodes, we inhibit the prediction
deviations induced by adversarial attacks. We weaken the
‘message passing’ strength of an adversarial edge to the
extent that is positively related to the distance between the
semantic representations of the nodes on its ends, because
the more different the nodes linked by an adversarial edge
are, the more deviations on the predictions are induced by
the edge (see Eq. (2)).

Recent research in adversarial machine learning has seen
a rapid back-and-forth between adversarial attacks and de-
fenses, in which several advanced defense approaches were
broken by newly proposed attack methods [9]. Such ‘arms
races’ leave machine learning systems vulnerable to attack.
To circumvent this problem, our solution is to provide
theoretical guarantees for the robust node classification
beyond the intuitive justification, whereby the model output
does not excessively change when faced with adversarial
perturbations. In particular, we focus on defending against
structural perturbations, i.e., adding/deleting edges, which fit
well for the characteristics of graph data.

To provide the provable robustness guarantees, a chal-
lenge is that the complex non-linear activation functions
in GCNs make the relations between inputs and outputs
hard to analyze. The irregular and noisy graph structure
aggravates this challenge. Another challenge lies in the
‘message passing’ of GCNs, with which the predictions
of widespread nodes would be affected by even a small
number of adversarially added/deleted edges. Therefore, we
have to consider widespread nodes and edges for analyzing
the prediction of a node. To address these challenges, we



first derive the deviation bound for a single layer. This
enables us to consider only the effects within the first-hop
neighborhood, where we mainly use Lipschitz conditions
[10] and the Triangle Inequality [11] for analysis. Next, we
extend the bound to the case of multiple stacked layers, and
finally obtain the error bounds for the model predictions in
Theorem 2 with our low-pass ‘message passing’ mechanism.

Our low-passing ‘message passing’ is a general approach
that can be incorporated into the existing GCN architectures,
e.g., JKNet [12], IncepGCN [13], ResGCN [14], to enhance
their robustness. We conduct extensive experiments over the
public graph datasets: Cora, Citeseer, Pubmed [1], Coauthor-
CS and Coauthor-Physics [15] to evaluate the efficacy of
our proposed method on the task of node classification.
The empirical results show that, under various adversarial
attacks, e.g., RL-S2V, [16], NETTACK [6], etc., our low-
pass approach effectively improves the performances of
multiple GCNs and enable them to consistently outperform
benchmark methods in accuracy by 5%-20%. Furthermore,
we observe that the derived guarantee on error bounds is
reliable even when most nodes in the graph are attacked.

Our contributions are as follows:
• Low-Pass Message Passing: We propose a novel ap-

proach for making GCNs robust against adversarial
edge additions and deletions, by weakening ‘message
passing’ between the semantically dissimilar nodes.

• Provable Robustness: In Theorem 2, we provide for-
mal robustness guarantees against graph structural at-
tacks with our low-pass ‘message passing’ mechanism.

• Effectiveness: Our experimental results show that our
approach outperforms benchmarks in accuracy by 5%-
20% on graphs under adversarial attacks.

II. RELATED WORK

Graph neural networks have shown promising perfor-
mance in graph learning [3], [17], [18], [19], [20]. More
recently, many works have shown that GCNs are suscep-
tible to adversarial evasion and poisoning attacks. Evasion
attacks assume that during the testing phase, the adversary
is allowed to add edges to each node. Poisoning attacks, in
contrast, are done at training time [21], i.e., the attacks exist
in both training and testing stages. [22] provides an early
survey of this area. [23] gives a meta-learning approach to
learn poisoning attacks on node classification models.

However, works on the defensive side, i.e., graph neural
network approaches that are robust against adversaries, are
sparser. [24] proposes an adversarial training approach for
graph neural networks. However, this work focuses on a
particular type of attack (gradient-based attacks) and does
not provide theoretical results. In [21], the authors propose
a robust GCN model, which tries to defend against poisoning
attacks by using Gaussian distributions as the hidden repre-
sentations to replace plain vectors. However, they provide no
robustness guarantees, and our low pass ‘message passing’,

which follows the plain vectors of standard GCNs, is more
succinct and leads to better generalization and interpretabil-
ity. [25] improves the robustness by removing existing edges
whose connected nodes have low feature similarities.

Our proposed method differs from existing methods in
the sense that: it presents a new ‘message passing’ module
that can be embedded into diverse GCN models for higher
robustness instead of a brand new GCN architecture; we
provide the provable bound on the prediction deviations with
attacked graph structures.

III. PROBLEM DEFINITION

In this section, we introduce the essential preliminaries
and notations of the graph data, GCN models, as well as
the corresponding attacks and our target.

A. Preliminaries

We define a graph as G = (V, E), where V denotes the
vertex set consisting of N vertices, and E = V × V is the
set of edges. Let A be the N ×N adjacency matrix of the
given graph, Aij = 1 indicates that edge eij exists between
node i and node j, and Aij = 0, otherwise.

Let Ni be the neighborhood of node i (including itself)
and |Ni| counts the cardinality of Ni. Given a vector v, we
use ‖v‖ to denote its `1 norm; while given a matrix X, we
denote its `∞ norm as ‖X‖.

B. Graph Convolutional Networks

We introduce the well-established multi-layer GCN model
in [3] for node classification, which first adds self-loops to
the adjacency matrix in Ã = A+I, then defines the (l+1)-th
layer by:

H(l+1) = σ(D−1/2ÃD−1/2H(l)W(l)) (1)

Here W(l) is a trainable weight matrix for layer l, D is
the diagonal matrix of degrees (Dii =

∑
j Ãij = di),

and σ is the non-linear activation function ReLU [26]. The
first layer is defined using node features X as input, i.e.,
H(0) = X (one row per node). In the output layer, the
hidden representation H(L) is passed through a Softmax
function to obtain predicted categories for each node: P =
softmax(H(L)). Note that GCNs in practice are typically
limited to 2 or 3 layers for node classification [3]. Note that
D−1/2ÃD−1/2 is the aggregation matrix for governing the
‘message passing’ across GCN layers.

C. Adversarial Attack and Our Target

Although the GCN model defined in Eq. (1) is effective
for node classification, existing works [23] have confirmed
that adversarial attacks can heavily degrade its performance.

The adversary adds or removes any edges for the targeted
graph nodes in order to affect their classification output as
much as possible, subject to a set of budget constraints. Let
Ňi be the perturbed neighborhood of node i. The budget



of the adversary is measured in terms of the fraction of
each node’s edges that the adversary can modify. LetMi =
(Ni \ Ňi) ∪ (Ňi \ Ni) represent the set of neighbors added
or deleted by the adversary to node i. The budget constraint
is |Mi|/di < ∆ for all i, where ∆ is the given budget limit.

Our target is to propose a robust node classification
method that effectively defends against graph structural
attacks. Additionally, we focus on obtaining an upper bound
for the deviations of the log probability | log P̌ic − logPic|
of any node i and any class c under any perturbation. This
bound limits the damage that future intelligent attacks may
cause over GCNs with our low-pass ‘message passing’.
Consequently, we resolve the issue that attacks proposed in
the future can easily break currently ’robust’ models.

IV. LOW-PASS MESSAGE PASSING

In this section, we introduce our low-pass ‘message pass-
ing’ mechanism. We first present our low-pass aggregation
matrix for controlling the message passing across GCN
layers and explain why GCNs are robust with it. Then, we
prove theoretical guarantees for the robustness. Finally, we
present the complexity analysis.

A. Low-Pass Aggregation Matrix

Recall that in Eq. (1), D−1/2ÃD−1/2 acts as the aggrega-
tion matrix governing ‘message passing’. Denote h

(l)
i as the

l-th layer embedding of node i, i.e., the i-th row of H(l). In
a GCN layer, the aggregated representation of node i can be
expressed as haggre

i =
∑

j∈Ni

1√
didj

hj by symmetric ag-

gregation as introduced in Eq. (1) or haggre
i =

∑
j∈Ni

1
dj
hj

by row normalization. In practice, these two expressions give
similar performance [27]. With row normalization, we have:

haggre
i =

∑
j∈Ni

1

di
hj = hi +

1

di

∑
j∈Ni\{i}

(hj − hi) (2)

For haggre
i , hi is independent from the graph structure.

Neighbor j influences haggre
i by hj − hi. The ‘message

passing’ strength from different neighbors (edge weight) are
equal. This mechanism leaves large space for the adversarial
attacks, since through the fake edge eij , for example, the per-
turbations hj−hi, which is potential to be excessively large,
can be propagated to node i (haggre

i ). For the robustness of
GCNs, we aim to limit the influence that a node can have on
another. Denote R > 0 as the threshold for controlling our
low-pass ‘message passing’. We define the weight of edge
eij at layer l as:

β
(l)
ij =

R

max(R, ‖h(l)
i − h

(l)
j ‖)

(3)

Note that this assigns a weight of 1 if h
(l)
i and h

(l)
j are

less than R apart, while gradually reducing the weight as the
distance between them exceeds R. Then, our edge weights
β

(l)
ij acts as a low-pass filter to prevent any node from being

Figure 1: Our low-pass edge weights inhibit the effects
from adversarial edges. Edge e23 is injected for attacking
node 2. With the original message passing (see. Eq. (2)),
the feature h3 affects haggre

2 heavily by h3 − h2. But our
low-pass edge weight β23 inhibits this effect.

excessively affected by any of its neighbors, and vice versa.
In addition, since h

(l)
j −h

(l)
i infers how different nodes i and

j are semantically, β(l)
ij weakens the strength of the edges

connecting significantly distinct nodes, which are likely to be
adversarial. An example of the effects of our β(l)

ij is shown
in Fig. 1. Intuitively, utilizing β(l)

ij inhibits the influence of
adversarial edges.

Based on the above analysis, we define our low-pass ag-
gregation matrix B(l) on layer l to replace D−1/2ÃD−1/2:

B
(l)
ij =


β

(l)
ij /di if j ∈ Ni \ {i}

1−
∑

j∈Ni\{i} β
(l)
ij /di if j = i

0 otherwise

(4)

For each edge eij , we set B(l)
ij = β

(l)
ij /di on the l-th layer.

This definition could result in the entries of row i summing
to less than 1. Hence, we add the necessary amount to the
diagonal entry B(l)

ii to make the row sum to 1: i.e., B(l)
ii =

1−
∑

j∈Ni\{i} β
(l)
ij /di. We add more strengths for the self-

loops because the features belonging to a node itself is more
essential than those from other nodes.

A unified view of GCN with our low-pass ‘message
passing’ is shown on the left side of Figure 2. The right
side of Figure 2 shows the final-layer representations given
by the original GCN, compared with our low-pass approach.
After injecting the adversarial edge e12, we observe a
large deviation in node 1’s embedding. However, our low-
pass ‘message passing’ restrain the deviation greatly, which
implies better robustness.

Note that our low-pass ‘message passing’ mechanism
is to use the aggregation matrix B defined in Eq. (4) to
conduct the message passing in GCN operations. Hence, it
is applicable to the general existing GCN architectures, e.g.,
JKNet [12], IncepGCN [13], ResGCN [14]. These advanced
GCN variants are shown to be more effective than the vanilla
GCN to some extent, and our approach can additionally
enhance their robustness under perturbations.

B. Provable Robustness

Our theoretical results show for any perturbation pertur-
bations under a given budget, our approach provides a limit



Figure 2: (left) GCN with our low-pass ‘message passing’. The low-pass edge weight between nodes 1 and 2 is computed
based on their representations. (right) The final-layer hidden representations of the nodes retrieved by GCN belonging to
two classes in Citeseer [1] (visualized via t-SNE [28]). After the adversarial injection of edge e12, severe deviations happen
on node 1. But with our low-pass ‘message passing’, its deviation is inhibited.

on how much the deviations are produced on predictions.
This is possible due to our edge weighting function β

(l)
ij ,

limits the effects of each edge. We first show a lemma to
account for the effect of ReLU , i.e., σ(·):

Lemma 1. Given any matrices X,Y, we have

‖X−Y‖ ≥ ‖σ(X)− σ(Y)‖ (5)

Proof: Recall that a function f is Lipschitz with con-
stant C if |f(x)−f(y)|

|x−y| ≤ C for all x and y. Note that
f(x) := |x| is Lipschitz with constant 1 by triangle inequal-
ity, so that σ(x) = (x+ |x|)/2 is Lipschitz with constant 1
as well. Applying this elementwise, X−Y has elementwise
larger absolute values than σ(X)−σ(Y). Thus, by definition
of the norm we have ‖X−Y‖ ≥ ‖σ(X)− σ(Y)‖.

Next, we will bound the deviations on the (l+1)-th layer
(‖H(l+1) − Ȟ(l+1)‖) as a function of the deviations of the
l-th layer (‖H(l)− Ȟ(l)‖). We then use it to derive a bound
for ‖H(l) − Ȟ(l)‖,∀l ≥ 0. Recalling that the set of the
adversarial edges is Mi = (Ni \ Ňi)∪ (Ňi \Ni), we have:

Lemma 2. Given the budget of the graph structural attacks
as Mi/di ≤ ∆ < 1,∀i, the deviation of H(l+1) is bounded
by:

‖H(l+1) − Ȟ(l+1)‖ ≤ ‖W(l)‖( 2R∆

1 + ∆
+ 4‖H(l) − Ȟ(l)‖)

Proof:

‖H(l+1) − Ȟ(l+1)‖
=‖σ(B(l)H(l)W(l))− σ(B̌(l)Ȟ(l)W(l))‖
≤‖B(l)H(l)W(l) − B̌(l)Ȟ(l)W(l)‖ by Lemma 1

≤‖B(l)H(l) − B̌(l)Ȟ(l)‖ · ‖W(l)‖.

The norm of row i of the matrix B(l)H(l) − B̌(l)Ȟ(l) is:

‖
∑
j∈Ni

β
(l)
ij

di
(h

(l)
j − h

(l)
i )−

∑
j∈Ňi

β̌
(l)
ij

ďi
(ȟ

(l)
j − ȟ

(l)
i )‖

≤‖
∑
j∈Ni

β
(l)
ij

di
(h

(l)
j − h

(l)
i )−

∑
j∈Ni

β̌
(l)
ij

di
(ȟ

(l)
j − ȟ

(l)
i )‖+ (6)

‖
∑
j∈Ni

β̌
(l)
ij

di
(ȟ

(l)
j − ȟ

(l)
i )−

∑
j∈Ňi

β̌
(l)
ij

ďi
(ȟ

(l)
j − ȟ

(l)
i )‖ (7)

We first consider the edge addition case. Denote ai as the
number of edges added to node i. The term in Eq. (7) is
bounded as follows:∥∥∥∥∥∥

∑
j∈Ni

β̌
(l)
ij

di

(
ȟ

(l)
j − ȟ

(l)
i

)
−
∑
j∈Ňi

β̌
(l)
ij

ďi

(
ȟ

(l)
j − ȟ

(l)
i

)∥∥∥∥∥∥
=‖

∑
j∈Ňi\Ni

β̌
(l)
ij

ďi
(ȟ

(l)
j − ȟ

(l)
i )−

∑
j∈Ni

β̌
(l)
ij ai

di · ďi
(ȟ

(l)
j − ȟ

(l)
i )‖

≤
∑

j∈Ňi\Ni

‖
β̌

(l)
ij

ďi
(ȟ

(l)
j − ȟ

(l)
i )‖+

∑
j∈Ni

‖
β̌

(l)
ij ai

di · ďi
(ȟ

(l)
j − ȟ

(l)
i )‖

≤
∑

j∈Ňi\Ni

R

ďi
+
∑
j∈Ni

Rai

di · ďi

=
2R · ai
ďi

=2R
∆

1 + ∆



For the term in Eq. (6), we have:

‖
∑
j∈Ni

β
(l)
ij

di
(h

(l)
j − h

(l)
i )−

∑
j∈Ni

β̌
(l)
ij

di
(ȟ

(l)
j − ȟ

(l)
i )‖

=
∑
j∈Ni

1

di
‖β(l)

ij (h
(l)
j − h

(l)
i )− β̌(l)

ij (ȟ
(l)
j − ȟ

(l)
i )‖

Let D = 2‖H(l)−Ȟ(l)‖. Then D ≥ ‖(h(l)
i −h

(l)
j )− (ȟ

(l)
i −

ȟ
(l)
j )‖ for any j. Denote m = max

(
‖h(l)

j − h
(l)
i ‖, R

)
, m̌ =

max
(
‖ȟ(l)

j − ȟ
(l)
i ‖, R

)
. For any index j, we have two

cases:
case 1: ‖h(l)

i − h
(l)
j ‖ ≥ ‖ȟ

(l)
i − ȟ

(l)
j ‖. Then:

‖β(l)
ij (h

(l)
j − h

(l)
i )− β̌(l)

ij (ȟ
(l)
j − ȟ

(l)
i )‖

≤‖β(l)
ij (h

(l)
j − h

(l)
i )− β(l)

ij (ȟ
(l)
j − ȟ

(l)
i )‖+

‖β(l)
ij (ȟ

(l)
j − ȟ

(l)
i )− β̌(l)

ij (ȟ
(l)
j − ȟ

(l)
i )‖

≤β(l)
ij ·D + ‖ȟ(l)

j − ȟ
(l)
i ‖|β

(l)
ij − β̌

(l)
ij |

≤D + ‖ȟ(l)
j − ȟ

(l)
i ‖(

R

m̌
− R

m̌+D
)

=D + ‖ȟ(l)
j − ȟ

(l)
i ‖

RD/m̌

m̌+D
≤2D

case 2: ‖h(l)
i − h

(l)
j ‖ < ‖ȟ

(l)
i − ȟ

(l)
j ‖. Then:

‖β(l)
ij (h

(l)
j − h

(l)
i )− β̌(l)

ij (ȟ
(l)
j − ȟ

(l)
i )‖

≤‖β(l)
ij (h

(l)
j − h

(l)
i )− β̌(l)

ij (h
(l)
j − h

(l)
i )‖+

‖β̌(l)
ij (h

(l)
j − h

(l)
i )− β̌(l)

ij (ȟ
(l)
j − ȟ

(l)
i )‖

≤‖h(l)
j − h

(l)
i ‖|β

(l)
ij − β̌

(l)
ij |+ β̌

(l)
ij ·D

≤‖h(l)
j − h

(l)
i ‖(

R

m
− R

m+D
) +D

=‖h(l)
j − h

(l)
i ‖

RD/m

m+D
+D

≤2D

We conclude that Eq. (6) is bounded by

‖
∑
j∈Ni

β
(l)
ij

di
(h

(l)
j − h

(l)
i )−

∑
j∈Ni

β̌
(l)
ij

di
(ȟ

(l)
j − ȟ

(l)
i )‖

≤
∑
j∈Ni

1

di
‖β(l)

ij (h
(l)
j − h

(l)
i )− β̌(l)

ij (ȟ
(l)
j − ȟ

(l)
i )‖

≤2D

Finally, combining the bounds on Eq. (6) and (7) gives:

‖
∑
j∈Ni

β
(l)
ij

di
(h

(l)
j − h

(l)
i )−

∑
j∈Ňi

β̌
(l)
ij

ďi
(ȟ

(l)
j − ȟ

(l)
i )‖

≤2D + 2R
∆

1 + ∆

=4‖H(l) − Ȟ(l)‖+ 2R
∆

1 + ∆
.

In the case of both edge deletions and additions, we have a
similar bound as

4‖H(l) − Ȟ(l)‖+ 2R
∆

1 + ∆
,

of which the derivation is similar to the edge addition case.
Overall, we have the bound in (2).

Finally, this allows us to bound the adversarial perturba-
tion on the final layer:

Theorem 1. Given the attack budget: Mi/di ≤ ∆ < 1, we
have:

‖H(L) − Ȟ(L)‖ ≤ 2R
∆

1 + ∆
(

L−1∑
s=0

‖W(s)‖
L−1∏
l=s+1

4‖W(l)‖).

Proof: This follows from repeatedly applying Lemma
2 to each successive layer of the network.

Using this result, we show that the predicted probability
for each node can only change by a small factor. Let C be
the number of classes, and Pic be the predicted probability
of node i belonging to class c. We bound the prediction
deviations as:

Theorem 2. The adversarial perturbation in the log-
probability for node i belonging to any class c is bounded
by:

| log P̌ic − logPic|
≤‖H(L) − Ȟ(L)‖

≤2R
∆

1 + ∆
(

L−1∑
s=0

‖W(s)‖
L−1∏
l=s+1

4‖W(l)‖) (8)

Proof: We denote cmax = arg maxc′{H(L)
ic′ − Ȟ

(L)
ic′ }.

By the definition of the softmax function, we have

P̌ic/Pic = eȞ
(L)
ic −H

(L)
ic

∑C
c′=1 e

H
(L)

ic′∑C
c′=1 e

Ȟ
(L)

ic′

≤ eȞ
(L)
ic −H

(L)
ic
eH

(L)
icmax

eȞ
(L)
icmax

= e

(
Ȟ

(L)
ic −H

(L)
ic

)
+
(
H

(L)
icmax

−Ȟ(L)
icmax

)
≤ e‖H

(L)−Ȟ(L)‖ (9)

If c = cmax, the step (9) holds with Ȟ
(L)
ic − H

(L)
ic +

H
(L)
icmax

− Ȟ
(L)
icmax

= 0. Otherwise, it holds because



Table I: Statistics of the utilized datasets

Dataset # Nodes # Edges # Classes # Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500
Co-CS 18,333 81,894 67 6,805
Co-Phy 34,493 247,962 5 8,415

∣∣∣Ȟ(L)
ic −H

(L)
ic

∣∣∣+∣∣∣H(L)
icmax

− Ȟ(L)
icmax

∣∣∣ ≤ ‖H(L)−Ȟ(L)‖.This
derivation can be extended to the lower bound trivially:
P̌ic/Pic ≥ e−‖H

(L)−Ȟ(L)‖. Thus, we have the upper bound
for the log-probability deviations as ‖H(L) − Ȟ(L)‖. Then,
Eq. (8) follows with Theorem 1.

When ∆ → 0 or R → 0, the error bounds presented in
both Theorem 1 and 2 approach 0 as well, which match
the intuitions that fewer perturbations induce less deviation,
and smaller R prevents more attacks. The bound grows with
‖W(l)‖, which which agrees with our prior knowledge that
perturbations are amplified by matrix multiplication with the
GCN parameter matrices. Note that for the task of node
classification, the layer number of GCNs, i.e., L, is limited
to 2 or 3 [3]. As a result, the value in the brackets in Eq. (8)
is small. For example, when L = 2 and ‖W(l)‖ = 1 holds,
Eq. (8) is equal to:

2R
∆

1 + ∆
(4 + 1) = 10R

∆

1 + ∆
≤ 10R∆ (10)

Thus, in practice, we have the bound obtained from Eq. (8)
as O(R∆), which is linear in both the hyper-parameter R
and the attack budget ∆.

C. Complexity Analysis

Compared with the original ‘message passing’, our low-
pass approach needs to additionally compute the weights
for each edge, as shown in Eq. (3), leading to the time
complexity of O(|E|

∑L
i=1 ci), where ci is the dimension

of layer i. This is smaller than the time complexity of GCN
[3]. Thus, our low-pass ‘message passing’ does not change
the time complexity of GCN models.

V. EXPERIMENTS

In this section, we present the empirical results of our
proposed approach to the task of node classification. We
give the experimental settings first and then present and
analyze the experimental results. Overall, we aim to answer
the following questions:
(1) Adversarial Robustness: Does our method outperform
baselines in robustness against adversarial attacks?
(2) Theoretical Guarantees: Are our theoretical guarantees
reliable under perturbations?
(3) Parameter Sensitivity: Is our approach sensitive to
hyper-parameters?

A. Experimental Settings

Our baselines are as follows:
• GCN [3] is one of the most commonly used approaches

for node classification.
• JKNet [12] add skip connections between GCN hidden

layers to the top layer to address the over-smoothing
problem [32].

• IncepGCN [13] uses the structure of inception net-
works [33] to organize GCN layers.

• GAT [29] introduces the self-attention mechanism to
enhance the learning capacity.

• RGCN [21] uses Gaussian distributions in GCN layers
to absorb adversarial effects.

• PreProcess [25] improves the robustness by removing
existing edges whose connected nodes have low feature
similarities.

• PA-GNN [30] uses meta-optimization to transfer the
alleviation ability from clean graphs to the targeted
poisoned graph.

• Pro-GNN [31] simultaneously learn the clean graph
structure from perturbed graph and GNN parameters to
defend against adversarial attacks

Note that RGCN, PreProcess, PA-GNN, and Pro-GNN are
currently the state-of-the-art robust GCN methods. For the
implementations of all the approaches, we follow the pa-
rameter settings suggested by the authors. For our low-pass
‘message passing’, we implement it within GCN, JKNet,
and IncepGCN respectively, and set R = 1 by default, in
which the hyper-parameters of GCN architectures are set as
their authors suggest.

We focus on dealing with the attacks to graph structures,
which are closely related to the graph data characteristics, as
edge injections are often easy for an adversary to conduct,
and of practical interest: e.g. fake reviews, fake links in
social networks, etc [34]. We consider two types of standard
attack settings: evasion (test-stage) and poisoning (train-
stage) attacks. We use the following attack approaches:
• Greedy For each attacked node i with its predicted

class yi, we connect i with a specified number of nodes
whose prediction scores for yi are the lowest ones and
who are not meanwhile neighbours of i.

• RL-S2V [16] is an effective adversarial attack method
based on reinforcement learning, which is designed for
evasion attacks.

• NETTACK [6] is an adversarial attack approach for
GCNs, which focuses on solving a bi-level optimization
problem. It is effective for poisoning attacks. We utilize
the direct attack version of NETTACK, since it is more
powerful than the indirect one.

• Random We remove/add edges between randomly se-
lected node pairs.

Among these attack methods, the Greedy method is pro-
posed by us for efficient poisoning and evasion attacks. For



Table II: Results of node classification with the random splits of 20 labeled examples per class, in terms of test accuracy
(%). We report mean and standard derivations of 2000 trials on 20 splits with randomly selected targeted nodes.

Attack Method Defense Method Cora Citeseer Pubmed Co-CS Co-Phy

RL-S2V

GCN [3] 51.1±1.2 42.1±1.4 59.8±1.3 62.1±0.8 63.2±0.7
JKNet [12] 52.7±1.4 44.1±1.1 61.1±0.7 61.7±1.2 62.8±1.5
IncepGCN [13] 52.9±1.2 44.3±1.0 60.5±0.9 61.9±1.1 63.1±0.9
GAT [29] 51.8±1.5 43.2±0.6 60.3±1.1 61.4±1.4 62.5±1.3
RGCN [21] 58.6±1.3 52.8±1.4 66.5±1.6 68.3±1.9 69.5±2.1
PreProcess [25] 61.3±2.3 57.2±1.2 69.8±1.4 72.9±1.5 73.1±0.9
PA-GNN [30] 57.5±0.7 51.4±0.8 66.7±1.3 65.8±1.3 64.3±1.1
Pro-GNN [31] 59.1±0.7 52.8±0.8 69.3±1.3 69.0±1.3 68.9±1.1
Low-Pass GCN (Ours) 66.2±0.8 62.3±0.7 75.1±1.2 77.1±0.7 79.2±0.9
Low-Pass JKNet (Ours) 66.7±0.7 62.5±0.9 75.9±1.2 76.9±0.6 79.0±1.2
Low-Pass IncepGCN (Ours) 66.9±0.7 62.8±0.9 75.0±0.5 76.7±0.8 79.1±1.1

NETTACK

GCN [3] 49.2±1.4 44.8±1.2 60.7±1.1 61.1±1.1 61.4±0.7
JKNet [12] 49.9±1.1 44.3±0.7 61.2±1.2 60.9±1.3 61.5±1.0
IncepGCN [13] 49.8±1.1 45.2±1.3 60.9±0.7 61.0±0.8 61.1±1.1
GAT [29] 49.3±1.3 44.2±1.1 60.2±0.5 60.3±1.7 61.2±1.1
RGCN [21] 52.7±1.3 46.3±1.4 63.2±0.9 63.1±0.7 62.2±1.0
PreProcess [25] 53.2±0.9 48.6±1.1 63.9±1.1 64.2±0.6 65.4±0.8
PA-GNN [30] 57.9±1.1 52.1±1.3 68.4±1.4 68.4±1.1 67.6±1.5
Pro-GNN [31] 61.2±1.4 56.2±0.8 71.9±1.2 73.7±0.9 72.1±1.1
Low-Pass GCN (Ours) 64.3±0.8 60.2±1.1 74.3±0.9 75.2±0.7 76.1±1.0
Low-Pass JKNet (Ours) 64.8±0.6 59.9±1.0 74.5±0.8 75.0±0.5 75.9±1.4
Low-Pass IncepGCN (Ours) 64.5±0.5 60.7±0.9 74.2±1.3 75.0±0.8 75.4±1.3

the implementations of RL-S2V and NETTACK, we follow
the default parameter settings in the authors’ implementa-
tions.

We use standard benchmark datasets: Cora, Citeseer,
Pubmed [1], Coauthor-CS (short as Co-CS) and Coauthor-
Physics (short as Co-Phy) [15] for evaluation. The first
three are citation networks, and the last two are co-author
networks. Each of them contains an unweighted adjacency
matrix and bag-of-words features. The statistics of these
datasets are presented in Table I.

We conduct experiments on different datasets with random
splits. We randomly select 20 nodes per class to form
the training set, and the same number of samples for the
validation. All the remaining ones are put into the testing
set. We make 20 random splits for each dataset. And on each
split, we conduct the experiments for a specific number of
trials.

B. Experiments Against Adversarial Attacks

We consider both evasion and poisoning attacks in the
experiments. In the former setting, the trainable weights in
the model are kept unchanged after attacks, while in the
latter one, the model is retrained after attacks. Under both
attacking scenarios, we conduct the experiments for 100
trials with 50 nodes in the test set selected randomly as the
targeted nodes that are to be attacked. This setting can help
to observe the global performance of the defense models on
different nodes.

We present the performance of different defense ap-
proaches given the attacking methods, RL-S2V (for evasion)

and NETTACK (for poisoning), in Table II, where we per-
turb two edges per node on average. Our low-pass ‘message
passing’ significantly improves the robustness of various
GCN models and helps them to outperform the benchmark
approaches on different datasets by 5%-20%. GAT is an
attention GCN model designed as a strong alternative for
GCN for node classification. But on the attacked graph
structures, it performs worse than GCN and even the worst
among the benchmarks in some cases. The reason may
be that the attention mechanism of GAT prefers to give
more weights to neighbors with more deviated features,
on the opposite to our low-pass ‘message passing’, which
brings more risks to be attacked. This result implies that an
attention model designed for better effectiveness on clean
graphs does not necessarily work well under attacks.

Additionally, using our Greedy algorithm as the attack-
ing model, we present the results on the Cora, Citeseer,
and Pubmed datasets in Fig. 3. Our low-pass method still
performs better than the benchmark ones. The gap is large
especially when the number of perturbations is small. This is
in accordance with the error bound obtained in Theorem 2.
With fewer perturbations, i.e., a smaller ∆, the error bound
is lower, which helps to protect the model from the graph
structural attacks effectively. But with more perturbations,
the prediction deviations for different nodes increase, which
makes the model more sensitive to the graph structural
changes.

Indeed, we find that most algorithms perform similarly
between evasion and poisoning attacks. This is because in
either case, the adversary’s main route of attack is to add
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(a) Evasion on Cora
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(b) Evasion on Citeseer
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(c) Evasion on Pubmed
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(d) Poisoning on Cora
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(e) Poisoning on Citeseer
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(f) Poisoning on Pubmed

Figure 3: Classification accuracy vs. number of perturbations per node. Results of node classification with the random splits
of 20 labeled examples per class are presented. We report the mean values of 2000 trials on 20 splits with randomly selected
targeted nodes. We apply the Greedy method to attack the graph structures.

60 40 20 0 20 40 60 80
60

40

20

0

20

40

(a) GCN

60 40 20 0 20 40 60
60

40

20

0

20

40

60

(b) Low-Pass GCN

Figure 4: Low-Pass ‘message passing’ helps GCNs to learn
more robust representations. We visualize the final-layer
hidden representations of the all the nodes in the Cora
dataset given by GCN and the GCN with low-pass ‘message
passing’ by t-SNE [28]. We apply the random attacks on all
the nodes, with ∆ = 0.5.

edges from a node to other nodes belonging to different
classes, to attempt to cause misclassifications.

C. Random Attacks and Theoretical Guarantees

In this section, we evaluate the effectiveness of the pro-
posed methods under random attacks and observe whether
the proposed theoretical guarantees are reliable. Given the
budget ∆, we apply the globally random attacks applied on
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Figure 5: We provide an effective theoretical bound with
our low-pass ‘message passing’. We plot largest element-
wise deviations vs. adversarial attack budget ∆. The blue
line is the theoretical upper bound on the deviation of log
probabilities derived for our proposed method.

all the nodes (not only in the test set), instead of only attack-
ing a small ratio of nodes. This could be more challenging
and degrade the classification performance among all the
nodes heavily.

Firstly, we perform the random evasion attacks on the
Cora dataset over all the nodes with the attacking budgets
being ∆ = 0.5. We visualize the final-layer hidden represen-



Table III: Node classification accuracy (%) of our low-pass
‘message passing’ with different R values. We report mean
values of 2000 trials on 20 splits attacked by RL-S2V. The
best value at each row is boldface.

Dataset 0.1 0.2 0.5 1 2 5 10

Cora 58.1 63.8 66.1 66.2 65.1 53.2 51.4
Citeseer 52.1 56.3 62.1 62.3 58.3 42.9 42.6
Pubmed 71.2 72.1 75.3 75.1 72.1 62.2 60.6
Co-CS 71.6 72.3 76.8 77.1 75.1 63.2 62.9
Co-Phy 72.1 73.5 79.1 79.2 77.4 63.5 63.2

tations given by GCN and the GCN with low pass ‘message
passing’ presented in Figure 4. It is obvious that, under the
attacks of the same budget, the hidden representations of
different classes given by the low-pass method form tighter
clusters than GCN, i.e., the representations belonging to
the same class are concentrated more. This demonstrates
that our low-pass message passing method helps to achieve
better robustness on learning semantic features for nodes,
and potentially improves the node classification accuracy
under attacks.

Furthermore, we conduct the experiments to see whether
the derived bound is reliable. We randomly generate the
graphs with |V| = 10000 and the average degree being 100
[35], and the sparse binary features of 1000 dimensions with
20 non-zero elements per node. The weights are generated
by standard Gaussian variables and normalized row-wise so
that ‖W(l)‖ = 1,∀l holds. We perform random attacks to
the graph, which insert or delete edges between randomly se-
lected nodes the graph, as introduced in [21]. Figure 5 plots
the largest deviations in log probability | log P̌ic − logPic|
for any node i and any class c caused by the random attacks.
The error bound for the GCN with our low-pass ‘message
passing’ is obtained by Theorem 2. It can be seen that large
performance gaps exist between our approach and GCN
on the deviations since the proposed low-pass aggregation
matrix prevents excessive perturbations arising from the
graph structural attacks. Besides, the derived error bound
is reliable even when faced with random attacks applied on
the whole graph.

D. Experiments on Parameter Sensitivity

In this section, we present the results of the experiments
on the effects of the parameter selections on the performance
of our low-pass ‘message passing’ approach . We conduct
the experiments with different R values under the NL-S2V
evasion attacks. The experimental setting is as same as that
for Table II. We report the result in Table III. We can see that
the model is more robust with a smaller R against adversarial
attacks. The reason for this is that a low R ensures that
any neighbor of a node cannot have large effects through
‘message passing’ so that no matter how strong the attack
is, the classification results rely on the input features of each

node but are not greatly affected by the graph structural
changes. Also, the proposed Theorem 1 and Theorem 2
demonstrate this point, i.e., a small value R induces a low
error bound. For larger R values, the model is less robust.
This is because large R cannot defend against attacks from
camouflage edges effectively. Overall, the performance is
not sensitive to the value of R between 0.5 and 2. Thus,
empirically, we choose R = 1 as the default setting in all
of our experiments and show that we achieve satisfactory
performance with it.

VI. CONCLUSION

In this work, we propose the low-pass ‘message passing’,
a novel mechanism against adversarial edge additions and
deletions. The core design is a low-pass aggregation matrix,
which modifies the propagation strength of different edges
based on their reliability. We validate the effectiveness of our
method on defending perturbations through comprehensive
experiments and additionally provide provable robustness
guarantees against the graph structural attacks for the task
of node classification.

An interesting future direction is to extend our low-
pass ‘message passing’ mechanism to other tasks on the
graph data, such as link prediction and graph classification.
In addition, since the selection of the hyper-parameters
of our approach can influence the robustness of different
GCN models, how to use the approaches, e.g., Bayesian
Optimization, to automatically select the optimal values for
them is worth exploring.
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