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Abstract
Predicting anchor links across social networks has
important implications to an array of applica-
tions, including cross-network information diffu-
sion and cross-domain recommendation. One chal-
lenging problem is: whether and to what extent
we can address the anchor link prediction prob-
lem, if only structural information of networks is
available. Most existing methods, unsupervised or
supervised, directly work on networks themselves
rather than on their intrinsic structural regularities,
and thus their effectiveness is sensitive to the high
dimension and sparsity of networks. To offer a ro-
bust method, we propose a novel supervised model,
called PALE, which employs network embedding
with awareness of observed anchor links as super-
vised information to capture the major and spe-
cific structural regularities and further learns a sta-
ble cross-network mapping for predicting anchor
links. Through extensive experiments on two re-
alistic datasets, we demonstrate that PALE signif-
icantly outperforms the state-of-the-art methods.

1 Introduction
With the prosperity of online social networks, people of-
ten join multiple social networks [Zafarani and Liu, 2009;
Sun et al., 2012]. For example, one person could be an ac-
tive user in both Facebook and Twitter. These shared users
naturally form anchor links bridging different social net-
works [Kong et al., 2013]. Anchor links are crucial to cross-
network information diffusion [Peng et al., 2013], link pre-
diction [Ahmad et al., 2010; Dong et al., 2012], and cross-
domain recommendation [Man et al., 2015]. However, infor-
mation about anchor links is often not available in practical
scenarios, because most users have no motivation or are un-
willing to explicitly correlate their identities in different on-
line social networks [Backstrom et al., 2007]. This poses the
problem of anchor link prediction, i.e., identifying hidden an-
chor links across different social networks [Liu et al., 2014;
Tan et al., 2014; Zhang et al., 2015; Zhang and Yu, 2015].
Early studies address this problem either by leveraging self-
reported user profiles (e.g., user name, profile picture, lo-
cation, gender) and other demographical features [Iofciu et

al., 2011; Malhotra et al., 2012] or by exploiting user gener-
ated contents, such as, tweets, posts, blogs, reviews, and rat-
ings [Novak et al., 2004; Liu et al., 2013]. However, an im-
portant open problem is: whether and to what extent we can
address the anchor link prediction problem, if only structural
information of networks is available.

Existing approaches that leverage network structure for an-
chor link prediction fall into two main categories. The first
category of approaches works in an unsupervised manner,
where no information about explicit correspondence across
networks is leveraged. These approaches cope with the an-
chor link prediction problem as a problem of network align-
ment, which is generally an NP-hard combinatorial opti-
mization problem [Singh et al., 2007; Klau, 2009; Kollias
et al., 2012], and solve it by finding certain structural sim-
ilarity between nodes across networks. Consequently, these
approaches either are limited to networks with moderate
size, or can only be applicable to large scale networks un-
der a sparse assumption [Bayati et al., 2009]. The second
category of approaches is supervised [Kong et al., 2013;
Zafarani and Liu, 2013], with which the anchor link pre-
diction problem is solved under the supervision of observed
anchor links (e.g., some users may explicitly mark their ac-
counts in different social networks in their homepages, social
media channels, or third-party websites like Aboutme.com).
Most existing supervised approaches directly work on struc-
tural features of social network, such as, degree, clustering
coefficient, the number of involved triangles, common neigh-
bors, to name a few [Cui et al., 2013; Kong et al., 2013].
Without capturing intrinsic structural regularities of social
networks, these approaches are particularly sensitive to net-
work structure, and thus slight changes or noises of network
structure may result in remarkably different results. In sum,
we still lack an effective approach that can make the best of
the structural regularities of social networks and the informa-
tion pertaining to observed anchor links.

To bridge this gap, in this paper we propose a novel su-
pervised model, called PALE (Predicting Anchor Links via
Embedding), to tackle the anchor link prediction problem.
This model contains two anchor-link-aware stages, namely,
embedding and matching. Specifically, given two networks
for predicting their anchor links, we first conduct network
embedding on each network to capture its major structural
regularity. Unlike existing methods that directly work on
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human-defined structural features, we embed each network
into a low-dimensional space to learn effective representa-
tion of nodes. In this way, major structural regularity of net-
works is well captured, while insignificant details are filtered
away. Simultaneously, the network embedding preserves spe-
cific structural regularities, leveraging observed anchor links
as supervised information. This method makes our model
robust to slight changes of network structure. Next, in the
matching stage, taking the low-dimensional representations
of nodes as features, we learn a mapping function across the
two learned low-dimensional spaces, supervised by observed
anchor links. In order to offer the flexibility that the two latent
spaces can be nonlinearly correlated, Multi-Layer Perceptron
(MLP) is employed to learn the mapping function. Finally, for
each node in one network, we identify the most likely coun-
terpart in the other network according to the learned mapping
function. Besides the robustness, another important merit of
the proposed model is that the low-dimensional representa-
tion of network structure can be easily incorporated with con-
tents and demographic features to further improve the accu-
racy of anchor link prediction.

We validate the proposed anchor link prediction model on
two scenarios. The first one is to predict anchor links across
two partially observed networks, which are sampled from the
same social network. The second one intends to predict an-
chor links across two co-author networks in different research
areas, namely Artificial Intelligence and Data Mining. Exper-
imental results convincingly suggest that the proposed PALE
model outperforms the compared baselines. Extensive analy-
sis is also conducted to demonstrate the good performance of
PALE under different settings of network structure.

2 Predict Anchor Links via Embedding
Denote a social network as G = {V,E}, where V is the set
of nodes, and the edge set E ⇢ (V ⇥ V ) reflects social rela-
tionships among nodes (e.g., friendships in Facebook). In this
paper, we consider such a scenario: some users are simulta-
neously involved in two different social networks, forming
anchor links across the two networks. Without loss of gener-
ality, we refer to one network as source network, and the other
as target network, denoted with Gs and Gt respectively. For
each node in the source network, we aim to identify, if any,
its counterpart in the target network. This can be formally for-
mulated as the following anchor link prediction problem.

Anchor link prediction: Given two networks Gs =
{V s, Es} and Gt = {V t, Et} and a set of observed anchor
links T = {(v, u)|v 2 V s, u 2 V t}, it aims to identify hid-
den anchor links across Gs and Gt.

To solve the anchor link prediction problem, we propose
a novel supervised model, called PALE. In this model, the
source and target networks are both embedded into low-
dimensional spaces, denoted as Zs and Zt respectively, and
a mapping function � : Zs ! Zt across the two spaces is
learned. Formally, PALE aims to find the optimal Zs, Zt, and
� by

min
Zs,Zt,�

n

Le(G
s, Zs, Gt, Zt, T ) + Lm(�, Zs, Zt, T )

o

, (1)
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Figure 1: Illustrative diagram of the PALE model.

where Le(Gs, Zs, Gt, Zt, T ) is the loss when embedding
the source network Gs and the target network Gt into the
low-dimensional spaces Zs and Zt, and the matching loss
Lm(�, Zs, Zt, T ) reflects whether or not the observed anchor
links in T are correctly predicted by the mapping function �
with Zs and Zt as its inputs.

Unfortunately, it is very difficult to solve this optimization
problem efficiently because of the interdependence between
Zs, Zt and �. For this reason, we turn to find an approxi-
mately optimal solution, working in a two-stage embedding
and matching manner, as shown in Figure 1.

2.1 Anchor-link-aware Network Embedding
In this stage, each network is embedded into a low-
dimensional latent space, where each node vi is represented
as a d-dimensional vector zi. A crucial problem for anchor
link prediction is that some edges that exist in practice may
be unobserved, as they have not been explicitly built or fail to
be crawled. These missing edges can lead to unreliable rep-
resentations when embedding networks into latent spaces. To
combat this problem, we propose a strategy to identify hidden
edges with the help of the observed anchor links and the struc-
ture of the other network. Based on the identified unobserved
edges together with the observed ones, a reliable network em-
bedding is learned.

Cross Network Extension
Before network embedding, we first leverage observed an-
chor links to extend both source and target network. It is usu-
ally true that given a pair of users with anchor links, if they
have a connection in one network, so do their counterparts in
the other network [Bayati et al., 2009]. Based on such an ob-
servation, if two nodes are not linked in one network, but their
counterparts are linked in the other network, we can add an
edge between them in the present network, as shown in Fig-
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Figure 2: Network extension with the help of observed anchor
links. The bold lines with symbol ‘4’ (e.g., a�A and b�B)
represent anchor links. The dashed lines are the missing edges
that are not observed in one network, but can be assumed as
being present with the help of the counterpart edges in the
other network. For example, the node pair (b, c) is not linked
in the source network, but the counterpart node pair (B,C)
is linked in the target network. This offers us a clue to extend
the source network with edge b� c.

ure 2. Formally, given two networks Gs and Gt with anchor
links T , the extended network G̃s of the source network Gs

can be described as
Ṽ s =V s

Ẽs =Es [ {(vsm, vsn) : (v
s
m, ut

k) 2 T,

(vsn, u
t
l) 2 T, (ut

k, u
t
l) 2 Et}.

(2)

Similarly, the target network Gt is extended into G̃t. Note
that cross-network extension is not a mandatory requirement
in our model.

Network Embedding
With the extended source and target networks, we embed
them independently into latent spaces. For convenience, in
this subsection, we use the same notations without distin-
guishing the source and the target network. For a pair of nodes
vi and vj , given their d-dimensional representations zi and zj ,
the probability that an edge is observed between them is

p(vi, vj) = �(zTi · zj) =
1

1 + e�zT
i ·zj

, (3)

where �(x) = 1/(1 + exp(�x)) is the sigmoid function.
To learn the latent representation, we maximize the log-

likelihood of the extended network G̃
X

(i,j)2Ẽ

logp(vi, vj) =
X

(i,j)2Ẽ

log�(zTi · zj). (4)

Since only observed edges, including extended edges if
any, are modeled, there exists a trivial solution when maxi-
mizing the objective function in Eq. (4): zik = 1. To avoid
the trivial solution, for each observed edge (vi, vj), we max-
imize the objective function with negative sampling as

log�(zTi · zj) +
K
X

k=1

Evk/Pn(v)[log(1� �(zTi · zk))], (5)

where the first term models the observed edge, the second
expectation term samples negative edges from a null model
where each node is sampled with the probability Pn(v) ⇠
d
3/4
v as proposed in [Mikolov et al., 2013b] and K is the num-

ber of sampled negative edges, dv is the degree of node v.
Note that maximizing the summation of Eq. (5) over all

the edges in the extended network G̃s and G̃t independently
is an effective way to approximately minimize the loss of net-
work embedding Le in Eq. (1). Finally, we adopt stochastic
gradient descent to learn the latent representations.

2.2 Supervised Latent Space Matching
Next, we turn to learn a mapping function �, supervised by
the observed anchor links (vsl , u

t
n) 2 T with latent represen-

tations being zsl and ztn.
Given zsl 2 Zs, the mapping function parameterized as

�(zsl ;⇥) projects it into the target space Zt. Here, ⇥ is the
collection of all parameters in the mapping function �. The
loss is

Lm(�, Zs, Zt, T ) =
X

(vs
l ,u

t
n)2T

||�(zsl ;⇥)� ztn
�

�|F , (6)

where || · ||F is the Frobenius norm, which is a distance met-
ric between the predicted latent factor and the training latent
factor.

In this paper, we consider both linear and non-linear map-
ping functions. For the linear mapping function, ⇥ is a d⇥ d
matrix, as follows

�(zsl ;⇥) = ⇥⇥ zsl , vsl 2 V s. (7)

Eq. (6) finds the best matrix ⇥ so that ⇥⇥ zsl closely approx-
imates ztn for all labelled pairs (vsl , u

t
n) 2 T . Indeed, a linear

mapping function has been successfully used in the previous
study [Mikolov et al., 2013a].

In addition, we employ Multi-Layer Perceptron
(MLP) [Ruck et al., 1990] to capture the non-linear re-
lationship between the source and target spaces. In this way,
the two spaces obtained in the network embedding stage
are not required to be linearly aligned, which offers the
embedding stage more flexibility to capture the structural
regularities of networks.

2.3 Anchor Link Prediction
To make prediction, for any given node vsl in the source net-
work with its representation zsl , we map it into the target la-
tent space according to the mapping function �(zsl ;⇥). We
then predict hidden anchor links by identifying the counter-
part node ut

n that is the closest one to �(zsl ;⇥) by

min
n

||�(zsl ;⇥)� ztn||F . (8)

Alternatively, for each node in the source network, we can of-
fer a list of nodes in the target network as its potential coun-
terparts.

2.4 Complexity Analysis
In the network embedding stage, the total time complexity for
one network G is O(kd|E|), where k is the number of itera-
tions, d is the dimension of the embedding vectors, |E| is the
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number of edges in the network. In the latent space match-
ing stage, the two models with linear and non-linear mapping
functions have different time complexity. For the case of the
linear mapping function, the time complexity of solving each
row of the transfer matrix as a sub-problem is O(|T |d2), thus
the total complexity is O(|T |d3), where |T | is the size of the
set of observed edges; for the case with MLP as the non-linear
mapping function, the time complexity is O(kd|T |), where k
is the iteration times, |T | is the size of the set of observed
edges. For prediction, the time complexity to match nodes
across networks is O(|V |2), where |V | is the number of nodes
in the network.

3 Experiments
In this section, we compare the proposed PALE model with
existing baseline methods on two datasets. One contains net-
works sampled from the Facebook network. The other con-
sists of two co-author networks in different research areas,
namely, Artificial Intelligence and Data Mining.

3.1 Methods and Metrics for Comparison
We choose both unsupervised and supervised methods for
comparison, including

• Degree-Based Alignment: Nodes between two networks
are matched in terms of their degrees, offering a trivial
baseline for anchor link prediction.

• Matching Across Domains (MAD) [Li and Lin, 2014]:
It matches shared nodes across homogenous networks
through singular value decomposition, which is an un-
supervised model for anchor link prediction.

• Multi-Network Anchoring (MNA) [Kong et al., 2013]:
It extracts pairwise social features from partially aligned
social networks and then solves the anchor link predic-
tion problem as a classification problem. We use the
same settings to extract cross-network social features.

• Collective Random Walk (CRW) [Zhang and Yu, 2015]:
Random walk is conducted on networks with anchor
links to identify the counterpart of each node in the other
network.

• PALE (LIN): PALE model with a linear mapping func-
tion in the matching stage.

• PALE (MLP): PALE model with the MLP being em-
ployed as the mapping function, where the dimension
of the hidden layer is 2 ⇤ d, the learning rate and the reg-
ularizing coefficient are chosen based on a 5-fold cross-
validation.

As the anchor link prediction algorithms output a list of
candidate nodes for each node in the source network, F1-
measure and MAP@30 are adopted as metrics for perfor-
mance comparison.

3.2 Experiment on Facebook Dataset
Dataset
The first dataset1 was crawled from Facebook and published
in [Viswanath et al., 2009]. In the experiment, we filter out

1http://socialnetworks.mpi-sws.org/data-wosn2009.html

those nodes whose degree is less than 5, resulting in 40, 710
users and 766, 519 edges. We then adopt the following pro-
cess to sample two sub-networks, where nodes are all inher-
ited from the original network. For each edge, we generate
a random value p with the uniform distribution in [0, 1]. If
p  1�2↵s+↵s↵c, the edge is discarded; If 1�2↵s+↵s↵c <
p  1 � ↵s, it is preserved only in the first sub-network;
If 1 � ↵s < p  1 � ↵s↵c, it is kept only in the other
sub-network; Otherwise, it is preserved in both sub-networks.
With such a sample strategy, both sub-networks keep the
same sample ratio ↵s of edges from the original network in
average, reflecting the sparsity level of networks. Besides, an
expected fraction ↵c of edges are shared among the two sub-
networks, reflecting the overlap level.

In the experiment, one of the two sub-networks is selected
as source network Gs, and the other as target network Gt.
Since only edges could be different in sub-networks, every
corresponding pair of nodes in Gs and Gt are anchor linked
as the ground truth, and a fraction ↵t of them are chosen
as supervised anchor links T . Through the experiment, we
demonstrate the performance of the PALE model on different
settings of sparsity level ↵s and overlap level ↵c, compared
with all baseline models.

Results and Comparison
To comprehensively evaluate PALE, we compare it with base-
line methods in different settings. First, ↵t = 3% anchor
links are sampled for training and then predict the rest ones
as test data. Experimental results are presented in Table 1. In
Table 1(a) different sparsity levels ↵s = [0.5, 0.6, · · · , 0.9]
with the same overlap level ↵c = 0.9 are tested. Meanwhile,
with fixed sparsity level ↵s = 0.6, different overlap levels
↵c = [0.5, 0.6, · · · , 0.9] are examined in Table 1(b).

From Table 1, we can notice that the method using only the
degrees of nodes to predict anchor links achieves the poorest
performance, where both F1 and MAP are less than 0.1. With-
out considering observed anchor links as supervision, MAD
achieves about 0.39 and 0.41 in F1 and MAP, respectively,
in the case of ↵c = 90% overlapping edges between the two
networks. It becomes worse when the overlap level decreases.
For supervised methods, namely, MNA, CRW, and PALE, to
evaluate their performance, we conduct 10 runs of the exper-
iment with sampling ↵t = 3% anchor links for training. The
average results of F1 and MAP, as well as their standard devi-
ations, are given in Table 1. We can see that the performance
of these supervised methods is better than the unsupervised
method. Among all supervised methods, PALE (MLP) out-
performs the others in terms of both F1 and MAP under all
settings. PALE (LIN) achieves comparable performance with
CRW, which uses global structural information via random
walks. Since MNA considers only node similarity across net-
works through local structure information, it achieves much
worse performance than CRW and PALE. This again demon-
strates that structural information is important for improving
the accuracy of anchor link prediction, and our network em-
bedding method offers an effective way to capture the struc-
tural regularities of networks in a global and specific way.

In addition, we also examine the effect of different sizes of
the supervised anchor link set in the PALE model by varying
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Table 1: Performance comparison between different methods for predicting anchor links on the Facebook dataset.
Sparsity Level ↵s

Metric Models 50% 60% 70% 80% 90%

F1

Degree 0.0922 0.0932 0.0945 0.0947 0.0954
MAD 0.3899 0.3890 0.3893 0.3904 0.3922
MNA 0.4262± 0.0011 0.4290± 0.0016 0.4370± 0.0015 0.4365± 0.0011 0.4390± 0.0012
CRW 0.8693± 0.0006 0.8724± 0.0012 0.8734± 0.0013 0.8786± 0.0009 0.8820± 0.0022

PALE (LIN) 0.8652± 0.0011 0.8693± 0.0004 0.8713± 0.0007 0.8752± 0.0011 0.8802± 0.0012
PALE (MLP) 0.8936± 0.0005* 0.8943± 0.0012* 0.8966± 0.0011* 0.9009± 0.0012* 0.9012± 0.0011*

MAP

Degree 0.0928 0.0979 0.0983 0.0987 0.0991
MAD 0.3931 0.4032 0.4097 0.4112 0.4128
MNA 0.4571± 0.0002 0.4573± 0.0015 0.4583± 0.0013 0.4591± 0.008 0.4594± 0.0007
CRW 0.8834± 0.0005 0.8835± 0.0008 0.8898± 0.0004 0.8912± 0.0011 0.8915± 0.0004

PALE (LIN) 0.8875± 0.0012 0.8881± 0.0012 0.8829± 0.0005 0.8856± 0.0010 0.8881± 0.0014
PALE (MLP) 0.9100± 0.0008* 0.9207± 0.0009* 0.9224± 0.0011* 0.9228± 0.0005* 0.9237± 0.0008*

(a) Experimental results under different sparsity levels, ↵c = 90%. Significantly outperforms CRW at the: * 0.01 level, paired t-test.

Overlap Level ↵c

Metric Models 50% 60% 70% 80% 90%

F1

Degree 0.0089 0.0128 0.0334 0.0664 0.0932
MAD 0.1020 0.1523 0.2021 0.3337 0.3890
MNA 0.1340± 0.0012 0.1888± 0.0010 0.2170± 0.0013 0.3521± 0.0015 0.4290± 0.0016
CRW 0.2940± 0.0010 0.3823± 0.0012 0.5510± 0.0012 0.7350± 0.0008 0.8724± 0.0012

PALE (LIN) 0.3030± 0.0005 0.4079± 0.0004 0.5463± 0.0007 0.7330± 0.0009 0.8693± 0.0004
PALE (MLP) 0.3789± 0.0005* 0.4518± 0.0009* 0.5914± 0.0010* 0.7714± 0.0011* 0.8943± 0.0012*

MAP

Degree 0.0102 0.0133 0.0358 0.0704 0.0979
MAD 0.1321 0.1633 0.2312 0.3449 0.4032
MNA 0.1450± 0.0012 0.2498± 0.0010 0.2923± 0.0011 0.3978± 0.0012 0.4573± 0.0015
CRW 0.3245± 0.0007 0.4133± 0.0009 0.5998± 0.0014 0.7732± 0.0010 0.8835± 0.0008

PALE (LIN) 0.3399± 0.0005 0.4432± 0.0004 0.5659± 0.0009 0.7756± 0.0011 0.8881± 0.0012
PALE (MLP) 0.4197± 0.0010* 0.4845± 0.0007* 0.6224± 0.0012* 0.8118± 0.0010* 0.9207± 0.0009*

(b) Experimental results under different overlap levels, ↵s = 60%. Significantly outperforms CRW at the: * 0.01 level, paired t-test.

↵t from 0.5% to 5%. Without loss of generality, we check the
performance of PALE (MLP) only in terms of MAP. In Fig-
ure 3(a), the overlap level is fixed as ↵c = 0.9, while the spar-
sity level ↵s varies from 0.5 to 0.9. In Figure 3(b), the sparsity
level is fixed as ↵s = 0.6, while the overlap level ↵c takes dif-
ferent values in [0.5, 0.6, ..., 0.9]. From Figure 3, we can ob-
serve that as the size of the training set increases from 0.5%
to 2%, the performance of the PALE model is raised quickly
under various settings of sparsity level and overlap level. The
increase speed slows down when ↵t exceeds 2%. That is to
say, PALE can lead to good performance with relatively less
supervised information. Another interesting phenomenon is
that, anchor link prediction between sparser networks can
achieve similar prediction results, especially with more su-
pervised anchor links, as Figure 3(a) shows. In Figure 3(b),
two networks with less overlap edges, e.g. ↵c = 50%, cannot
predict as correctly as those with more overlap edges, even
when more anchor links are used for training. Thus, it sug-
gests that as compared to sparsity level, overlap level plays
a more important role in the performance of anchor link pre-
diction.

3.3 Experiment on Co-author Networks
Dataset
The second dataset used in this paper is a co-author net-
work formed by conference papers from the fields of Artifi-
cial Intelligence (AI) and Data Mining (DM), thus denoted as
AI-DM, which were extracted from the Microsoft Academic
Graph (MAG) [Sinha et al., 2015]2. MAG is a heterogeneous

2http://research.microsoft.com/en-us/projects/mag/

Table 2: Statistics of the AI-DM dataset.
Statistics AI DM

|V | 12,732 15,253
|E| 45,140 65,993

graph containing bibliographic information of publications,
citation relationships between publications, and information
of authors and institutions. We choose 10 representative con-
ferences on AI and DM3, respectively. Two co-author net-
works are then built on the two groups of papers, and the
authors with less than 3 co-author relationships are filtered
out. The statistics of the dataset is listed in Table 2. There are
1, 154 common authors between the two networks, forming
the ground truth of anchor links.

Results and Comparison
We consider training sets with ↵t ranging from 5% to 50%,
and the rest of anchor links are used for testing. For each sam-
ple ratio ↵t, we also carry out 10 runs of the experiment and
report the average results as shown in Figure 4. It is shown
that PALE exhibits the best performance on predicting anchor
links between the two co-author networks on AI and DM.
PALE (LIN) performs better than CRW in the cases where
the training set is less than 30% of existing anchor links. For
example, when 5% of existing anchor links are taken as the
training set, PALE (LIN) outperforms CRW by 37% (from

3The conferences selected from the AI field are IJCAI, AAAI,
CVPR, ICCV, ICML, NIPS, UAI, ACL, EMNLP, and ECAI, while
the conferences selected from the DM field include KDD, SIGMOD,
SIGIR, ICDM, ICDE, VLDB, WWW, SDM, CIKM, and WSDM.
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Figure 3: Performance results with different networks sam-
pled from the Facebook dataset.

0.1200 to 0.1651). However, when the training fraction ↵t

is greater than 30%, CRW becomes comparable to or even
slightly superior to PALE (LIN), while PALE (MLP) still
keeps superior. This suggests that a non-linear function can
better capture the mapping relationship across latent spaces.
It also justifies the validity of the PALE model.

3.4 Discussion on Network Embedding
In the PALE model, network embedding plays an impor-
tant role. There are several well-known methods for network
embedding, including Spectral Clustering (SC) [Tang and
Liu, 2011], Graph Factorization (GF) [Ahmed et al., 2013],
Deepwalk [Perozzi et al., 2014]. In this subsection we in-
vestigate the performance of the network embedding method
proposed in this paper by comparing it with those existing
ones. For this purpose, we replace the network embedding
method proposed in this paper with those existing ones in the
PALE model and then compare the performance of different
PALE models, where MLP is taken as the mapping function.
Moreover, we want to see how much the contribution of the
cross-network extension step to PALE. For this purpose, we
compare the performance of PALE with and without cross-
network extension, denoted as PALE(-). The experiment is
conducted on the AI-DM dataset, and the training set is sam-
pled with ↵t = 30%. In Table 3, we present the average val-
ues and standard variances of F1 and MAP@30 for 10 runs. It
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Figure 4: Performance comparison between different meth-
ods for predicting anchor links on the AI-DM dataset.

Table 3: Comparing different network embedding methods.
Methods F1 MAP

SC 0.4129± 0.0011 0.4698± 0.0007
GF 0.3455± 0.0008 0.3804± 0.0005

DeepWalk 0.4010± 0.0009 0.4571± 0.0008
PALE(-) 0.4093± 0.0007 0.4594± 0.0007
PALE 0.4271± 0.0009 0.4770± 0.0011

can be seen that our network embedding method outperforms
all existing ones.

4 Conclusions
In this paper, we proposed an embedding and matching based
model for anchor link prediction, called PALE. Different
from existing methods that either cope with anchor link pre-
diction as an unsupervised network alignment problem or di-
rectly work on structural features defined on networks, the
proposed model employs network embedding to keep ma-
jor structural regularities of networks with awareness of su-
pervised anchor links and then learns a stable cross-network
mapping for anchor link prediction. The effectiveness of the
proposed model was evaluated on two datasets. As future
works, we will devote to designing a unified optimization
method for anchor link prediction, balancing the costs at the
network embedding and latent space matching stages.
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