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Abstract

Principal component analysis (PCA) is a funda-
mental dimension reduction tool in statistics and
machine learning. For large and high-dimensional
data, computing the PCA (i.e., the top singular
vectors of the data matrix) becomes a challenging
task. In this work, a single-pass randomized algo-
rithm is proposed to compute PCA with only one
pass over the data. It is suitable for processing ex-
tremely large and high-dimensional data stored in
slow memory (hard disk) or the data generated in a
streaming fashion. Experiments with synthetic and
real data validate the algorithm’s accuracy, which
has orders of magnitude smaller error than an ex-
isting single-pass algorithm. For a set of high-
dimensional data stored as a 150 GB file, the al-
gorithm is able to compute the first 50 principal
components in just 24 minutes on a typical 24-core
computer, with less than 1 GB memory cost.

1 Introduction
Many existing machine learning models, no matter super-
vised or unsupervised, rely on dimension reduction of input
data. Even the applications of Deep Neural Networks on nat-
ural language processing tasks, prefer to use an embedding
of each word in a sentence [Mikolov et al., 2013; Bahdanau
et al., 2014], which essentially reduces the data dimension-
ality. Principal component analysis (PCA) is an efficient and
well-structured dimension reduction technique [Halko et al.,
2011a; Friedman et al., 2001]. However, how to calculate
PCA of large-size (say terabyte) and high-dimensional dense
data in a limited-memory computation node is still an open
problem. Plus some data are generated in stream, e.g., from
internet traffic, and signals from internet of things, we need
a kind of pass-efficient algorithm, or even single-pass algo-
rithm, to realize the dimension reduction of input data.

A single-pass algorithm has the benefit of requiring only
one pass over the data, and is particularly useful and effi-
cient for streaming data or data stored in slow memory [Halko
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et al., 2011b; Ye et al., 2016]. It also allows the computa-
tion with small or fixed RAM size [De Stefani et al., 2016].
Although there are provable single-pass truncated SVD al-
gorithms for symmetric positive semi-definite (SPSD) ma-
trices [Wang and Zhang, 2013; Gittens and Mahoney, 2016;
Wang et al., 2016], the study for general matrices is not suf-
ficient. [Halko et al., 2011b] proposed a single-pass algo-
rithm for approximately calculating SVD for general matri-
ces, but with a significant cost of accuracy. [Ordonez et al.,
2014] developed a PCA algorithm for large-size data, but only
applicable to low-dimensional data (less than one thousand
in dimension). Frequent-directions (FD) algorithm [Liberty,
2013] was a single-pass and deterministic matrix sketching
scheme [Woodruff, 2014], which is useful for matrix multi-
plication problem [Ye et al., 2016], but the PCA computation.

Randomized matrix computation has gained significant in-
creases in popularity as the data sets are becoming larger
and larger. It has been revealed that randomization can be
a powerful computational resource for developing algorithms
with improved runtime and stability properties [Halko et al.,
2011b; Drineas and Mahoney, 2016; Wang, 2015]. Com-
pared with classic algorithms, the randomized algorithm in-
volves the same or fewer floating-point operations (flops), and
is more efficient for truely large high-dimensional data sets,
by exploiting modern computing architectures. An idea of
randomization is using random projection to identify the sub-
space capturing the dominant actions of a matrix A. With
the subspace’s orthonormal basis matrix Q, a so-called QB
approximation is obtained: A ≈ QB. This produces a
smaller sketch matrix B, and facilitates the computation of
near-optimal decompositions of A. A simple implementation
of this idea and related techniques and theories have been pre-
sented in [Halko et al., 2011b]. With the merit of requiring a
small constant number of passes over data, this algorithm has
been applied to compute PCA of data sets that are too large to
be stored in RAM [Halko et al., 2011a]. It has also been em-
ployed to speed up the distributed PCA, without compromis-
ing the quality of the solution [Liang et al., 2014]. However,
this basic randQB algorithm still involves several passes in-
stead of a single pass over data, which makes it not efficient
enough or infeasible for some situations.

Progress has also been achieved based on the randomized
algorithm for QB approximation. In [Mary et al., 2015], the
basic randQB algorithm [Halko et al., 2011b] was slightly
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modified for computing the QR factorization. The main ef-
forts were paid to investigate the algorithm’s performance
scaling on shared-memory multi-core CPUs with multiple
GPUs, and the comparison with the traditional QR factor-
ization with column pivoting (QRCP). The results demon-
strated that the randomized algorithm could be an excellent
computational tool for many applications, with growing po-
tential on the emerging parallel computers. In [Martinsson
and Voronin, 2016], a randomized blocked algorithm was
proposed for computing rank-revealing factorizations in an
incremental manner. Although it enables adaptive rank de-
termination, the algorithm needs to access the matrix for a
number of times and is not efficient for large-size data.

Therefore, we reconstruct the randomized blocked algo-
rithm [Martinsson and Voronin, 2016] and enforce numerical
stability of the algorithm, which results in a single-pass PCA
algorithm owning the following advantages.
• Single-pass: it involves only one pass over specified

large high-dimensional data.
• Efficiency: it has O(mnk) or O(mn log(k)) time com-

plexity andO(k(m+ n)) space complexity for comput-
ing k principal components of anm×nmatrix data, and
well adapts to parallel computing.
• Accuracy: it has theoretical error bounds, and empiri-

cally shows much less error than the single-pass algo-
rithm [Halko et al., 2011b], offering good PCA accuracy
for matrices with different singular value distributions.

We have examined the effectiveness of the proposed single-
pass algorithm for performing PCA on large-size (∼150 GB)
high dimensional data, which cannot be fit in RAM (32
GB). The experimental results show that our single-pass al-
gorithm outperforms the standard SVD and existing competi-
tors, by largely reduced time and memory usage, and accu-
racy guarantees. For reproducibility, we share the codes of
the proposed algorithm and experimental data on https:
//github.com/WenjianYu/rSVD-single-pass.

2 Preliminaries
An orthonormal matrix denotes a matrix whose columns are a
set of orthonormal vectors; I denotes the identity matrix. The
Matlab convention is obeyed to specify row/column indices.

2.1 Singular Value Decomposition and PCA
Let A denote an m× n matrix. The SVD of A is

A = UΣV>, (1)
where U and V are m×min(m,n) and n×min(m,n) or-
thonormal matrices respectively, and Σ is a diagonal matrix.
The diagonal entries of Σ are the descending singular values
of A: σ11 ≥ σ22 ≥ · · · ≥ 0. The columns of matrices U and
V are the left and right singular vectors, respectively.

Taking the first k, k < min(m,n), columns of U and V
respectively, and the first k singular values in Σ, we have the
truncated (partial) SVD of matrix A:

Ak = UkΣkV>k , (2)
where Uk and Vk include the first k columns of U and V,
respectively. Σk is the k × k up-left submatrix of Σ. Ak is

actually the optimal rank-k approximation of A, in terms of
l2-norm and Frobenius norm [Eckart and Young, 1936].

The approximation properties of the SVD explain the
equivalence between SVD and PCA. Suppose each row of
matrix A is an observed data. The matrix is assumed to be
centered, i.e., the mean of each column is equal to zero. Then,
the leading right singular vectors {vi} of A are the principal
components. Particularly, v1 is the first principal component.

2.2 The Basic Randomized Algorithm for PCA
The algorithm in [Halko et al., 2011a] is based on the ba-
sic randQB algorithm for QB approximation, and described
as Algorithm 1. Ω is a Gaussian i.i.d. matrix. Replacing it
with a structured random matrix is also feasible, and can re-
duces the computational cost for a dense A from O(mnl) to
O(mn log(l)) flops [Halko et al., 2011b]. The over-sampling
technique which uses Ω with more than k columns is em-
ployed for better accuracy [Halko et al., 2011b]. Usually, the
over-sampling parameter s is a small integer, like 5 or 10.
“orth(X)” denotes the orthonormalization of the columns of
X. In practice, it is achieved efficiently by a call to a pack-
aged QR factorization (e.g., qr(X, 0) in Matlab), which
implements the QR factorization without pivoting.

Algorithm 1 Basic randomized scheme for truncated SVD

Require: A ∈ Rm×n, rank k, over-sampling parameter s.
1: l = k + s;
2: Ω = randn(n, l);
3: Q = orth(AΩ);
4: B = Q>A;
5: [Ũ,S,V] = svd(B);
6: U = QŨ;
7: U = U(:, 1 : k); V = V(:, 1 : k); S = S(1 : k, 1 : k);
8: return U,S,V.

The first four steps in Algorithm 1 is the basic randQB
scheme for building A’s QB approximation. This procedure
could not produce the optimal low-rank approximation. How-
ever, in many applications the optimal approximation is not
necessary, and even impossible to obtain due to the high com-
putational complexity of performing SVD. The existing work
has revealed that this randomized algorithm often produces
a good enough solution. Compared with the classic rank-
revealing QR factorization [Golub and Van Loan, 1996] for
low-rank approximation, it has less computational cost and
can obtain substantial speedup on a parallel computing plat-
form [Martinsson and Voronin, 2016].

The error of the randomized QB approximation could be
large for the matrix whose singular values decay slowly
[Halko et al., 2011b]. This can be eased by a technique called
power scheme [Rokhlin et al., 2009]. It is based on the fact
that matrix (AA>)PA has exactly the same singular vec-
tors as A, but its j-th singular value is σ2P+1

jj . This largely
reduces the relative weight of the tail singular values. Thus,
performing the randomized QB procedure on (AA>)PA can
achieve more accurate approximation. More theoretical anal-
ysis can be found in Sec. 10.4 of [Halko et al., 2011b]. On the
other hand, the power scheme increases the number of passes
over A from 2 to 2P+2 [Halko et al., 2011b].
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Notice that the output of the randomized approximation al-
gorithms is a random variable However, the variation of this
random variable is small, which means the output is always
very close to the variable’s expectation [Halko et al., 2011b].

2.3 An Existing Single-Pass Algorithm

Algorithm 1 involves two passes over matrix A. In [Halko et
al., 2011b], a single-pass algorithm was proposed as a remedy
(see Algorithm 2), where only Step 2 need access matrix A.

Algorithm 2 An existing single-pass algorithm

Require: A ∈ Rm×n, rank parameter k.
1: Generate random n× k matrix Ω and m× k matrix Ω̃;
2: Compute Y =AΩ and Ỹ =A>Ω̃ in a single pass over

A;
3: Q = orth(Y); Q̃ = orth(Ỹ);
4: Solve linear equation Ω̃>QB = Ỹ>Q̃ for B;
5: [Ũ,S, Ṽ] = svd(B);
6: U = QŨ; V =Q̃Ṽ;
7: return U,S,V.

Step 3 of Algorithm 2 results in matrices Q and Q̃ such
that A ≈ QQ>AQ̃Q̃>. Then, the left problem is how to
compute the small matrix B = Q>AQ̃. One can find out:

Q̃>Ỹ = Q̃>A>Ω̃ ≈ Q̃>A>QQ>Ω̃ = B>Q>Ω̃. (3)
So, B is approximately computed in Step 4. Due to these
approximations, the accuracy of this algorithm or its variants
is not good. We will reveal this through experiments.

2.4 The Randomized Blocked Algorithm

The randomized blocked algorithm in [Martinsson and
Voronin, 2016] is inspired by a greedy Gram-Schmidt proce-
dure for the orthonormalization step of basic randQB, which
constitutes an iterative updating of the QB approximation er-
ror. Then, the algorithm is converted to a blocked version to
attain high performance of linear algebraic computation (see
Fig. 1). It is easy to prove that, if the algorithm is executed
in exact arithmetic Q is orthonormal, B = Q>A, and after
Step (6) A becomes the approximation error: A−QB.

The algorithm is mathematically equivalent to the basic
randQB procedure (the first 4 steps of Algorithm 1), except
for the stopping criterion. The re-orthogonalization step (4)
is for easing the accumulation of numerical round-off error.

Figure 1: The blocked randQB algorithm, from [Martinsson and
Voronin, 2016].

3 Methodology
3.1 A Pass-Efficient Blocked Algorithm
The blocked randQB procedure in Fig. 1 facilitates adap-
tive rank determination, but increases the number of passes
over the data matrix. For many scenarios of using PCA, the
rank parameter k is a known value. Without the evaluation
of approximation error, the block randQB procedure can be
modified to be a pass-efficient procedure. It is presented as
Algorithm 3, with the re-orthogonalization step ignored. For
simplicity, we also assume that k is a multiple of b.

Algorithm 3 A pass-efficient blocked algorithm

Require: A ∈ Rm×n, rank parameter k, block size b.
1: Q = [ ]; B = [ ];
2: Ω = randn(n, k);
3: G = AΩ;
4: H = A>G;
5: for i = 1, 2, · · · , k/b do
6: Ωi = Ω(:, (i− 1)b+ 1 : ib);
7: Yi = G(:, (i− 1)b+ 1 : ib)−Q(BΩi);
8: [Qi, Ri] = qr(Yi);
9: Bi = R−>i (H(:, (i− 1)b+ 1 : ib)> −Ω>i B>B);

10: Q = [Q, Qi]; B = [B>, B>i ]
>;

11: end for

A major difference between Algorithm 3 and the algorithm
in Fig. 1 is the multiplications with A moved out of the loop.
With G = AΩ, Steps 7 and 8 in Algorithm 3 perform the
same function as Step (3) in the latter. Here, “qr” denotes a
standard QR factorization, i.e., QiRi = Yi. During the first
iteration, Q and B are null matrices and therefore we should
drop off the last items in Step 7 and Step 9. The equivalence
of the both algorithms is guaranteed with Theorem 1.

Theorem 1. The Q and B obtained with Algorithm 3 satisfy:
Q is orthonormal and B = Q>A.

Proof. We prove Theorem 1 via induction. For any variable
v after the i-th iteration of the loop is executed, we use v(i)
to denote its value. Moreover, we assume the random matrix
Ω is of full column rank. In the base case, Q(1) = Q1 is
orthonormal because of Step 8 in Algorithm 3. It also ensures
that Qi is orthonormal, and QiRi = Yi. So,

B(1) = B1 = R−>1 Ω>1 A>A = (AΩ1R
−1
1 )>A

= (Y1R
−1
1 )>A =

(
Q(1)

)>
A .

(4)

Now, suppose the proposition holds for the i-th iteration.
We need to prove Q(i+1) is orthonormal and B(i+1) =(
Q(i+1)

)>
A. We first check the orthogonality of Qi+1.

Q>i+1Q
(i) =

((
A−Q(i)B(i)

)
Ωi+1R

−1
i+1

)>
Q(i)

=
((

A−Q(i)
(
Q(i)

)>
A
)

Ωi+1R
−1
i+1

)>
Q(i)

=
(
(I−PQ(i))AΩi+1R

−1
i+1

)>
Q(i)

=
(
AΩi+1R

−1
i+1

)>
(Q(i) −PQ(i)Q(i)) = O.

(5)

The last two equalities of (5) is based on the properties of pro-
jector matrix PQ(i) ≡ Q(i)

(
Q(i)

)>
. See the Appendix. Eq.
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(5) guarantees that Q(i+1) is an orthonormal matrix. Then,

Bi+1 = R−>i+1Ω
>
i+1

(
A>A−B(i)>B(i)

)
1
= R−>i+1Ω

>
i+1

(
A−Q(i)B(i)

)> (
A−Q(i)B(i)

)
=
(
AΩi+1R

−1
i+1 −Q(i)B(i)Ωi+1R

−1
i+1

)> (
A−Q(i)B(i)

)
= Q>i+1

(
A−Q(i)B(i)

) 2
= Q>i+1A ,

where equality 1 holds due to Q(i) is orthonormal and B(i) =(
Q(i)

)>
A. Equality 2 just follows from (5).

Therefore, Q is orthonormal and B = Q>A, based on the
induction hypothesis and Step 10 in Algorithm 3.

As the blocked randQB algorithm is mathematically equiv-
alent to the basic randQB, Algorithm 3 inherits the theoreti-
cal error bound (if ignoring the round-off error):

E (‖A−QB‖F ) ≤
(
1 + k

s−1

)1/2 (∑min(m,n)
j=k+1 σ2

jj

)1/2
, (6)

where E denotes expectation. We see that the theoretically
minimal error is only magnified by a factor of (1 + k

s−1 )
1/2.

If measuring the error with l2-norm, we have a similar error
bound formula (see Theorem 10.6 of [Halko et al., 2011b]).

3.2 The Version with Re-Orthogonalization
Due to the accumulation of round-off errors, the orthonor-
mality among the columns in {Q1,Q2, · · · } may lose. This
affects the correctness of some statements in Algorithm 3,
and increases the error of its output. To fix this problem, we
explicitly reproject Qi away from the span of the previously
computed basis vectors, just as what is done in [Martinsson
and Voronin, 2016]. Then, the formula for matrix Bi is re-
vised to incorporate the modified Qi.

The re-orthogonalization step corresponds to:

Q̃iR̃i = Qi −QQ>Qi, (7)

where Q̃i 6= Qi and R̃i 6= I due to round-off error.
And, Q̃i is better orthogonal to the previously generated
{Q1,Q2, · · · ,Qi−1} than Qi. Since QiRi = Yi,

Q̃i =
(
I−QQ>

)
YiR

−1
i R̃−1i , (8)

B̃i =Q̃>i A = (R̃iRi)
−>Y>i

(
I−QQ>

)
A

=(R̃iRi)
−> (H>i −Y>i QB−Ω>i B>B

)
,

(9)

where Hi denotes H(:, (i − 1)b + 1 : ib). The last equality
utilizes that B = Q>A, although this may not hold after a
large number of iterations due to numerical round-off error.

Based on (7) and (9), the version with re-orthogonalization
can be obtained by replacing Step 9 with the following steps:

9: [Qi, R̃i] = qr(Qi −Q(Q>Qi));
9’: Ri = R̃iRi;
9”: Bi=R−>i (H(:, (i−1)b+1 : ib)>−Y>i QB−Ω>i B>B);

Here, Qi and Bi are overwritten to stand for Q̃i and B̃i.

3.3 The Single-Pass Algorithm for PCA
An important feature of Algorithm 3 is that Steps 3 and 4 can
be executed with only one pass over matrix A. Suppose ai

and gi denote the i-th rows of matrix A and G, respectively.

H = [a>1 ,a
>
2 , · · · ,a>m]


g1

g2

...
gm

 =
m∑
i=1

a>i gi. (10)

So, with the i-th row of A, we can calculate the i-th row of
G with Step 3, and then the i-th item in the summation for
calculating H as (10). Combined with the over-sampling, the
single-pass algorithm for computing PCA is as Algorithm 4.

Algorithm 4 A single-pass algorithm for computing PCA

Require: A ∈ Rm×n, rank parameter k, block size b.
1: Q = [ ]; B = [ ];
2: Choose l = tb, which is slightly larger than k;
3: Ω = randn(n, l); G = [ ]; Set H to an n× l zero matrix;
4: while A is not completely read through do
5: Read next few rows of A into RAM, denoted by a;
6: g = aΩ; G = [G; g];
7: H = H + a>g;
8: end while
9: for i = 1, 2, · · · , t do

10: Ωi = Ω(:, (i− 1)b+ 1 : ib);
11: Yi = G(:, (i− 1)b+ 1 : ib)−Q(BΩi);
12: [Qi, Ri] = qr(Yi);
13: [Qi, R̃i] = qr(Qi −Q(Q>Qi));
14: Ri = R̃iRi;
15: Bi=R−>i (H(:, (i−1)b+1 : ib)>−Y>i QB−Ω>i B>B);
16: Q = [Q, Qi]; B = [B>, B>i ]

>;
17: end for
18: [Ũ,S,V]= svd(B);
19: U = QŨ;
20: U = U(:, 1 : k); V = V(:, 1 : k); S = S(1 : k, 1 : k);
21: return U,S,V.

In the algorithm, the while loop corresponds to Steps 3
and 4 in Algorithm 3, but involves only one pass over A.
In every step, small matrices in size m × l or n × l (noting
l � min(m,n) ) are used. So, the memory cost of this al-
gorithm is small, which can be bounded by that for storing
(m + 2n)l floating numbers. The computational cost of this
algorithm is the same as Algorithm 3 and 1 [Halko et al.,
2011a], i.e., O(mnk) or O(mn log(k)) flops. The theoret-
ical error bounds of A−QB also apply to A−USV> in
Algorithm 4, as the latter hardly induces new error.

This single-pass algorithm requests that the data matrix A
is stored in a row-major format. Otherwise, we can apply
the algorithm to A> instead. In case there is a request for
higher accuracy, the power scheme can be applied with like
P =1, which is equivalent to replacing A with AA>A in the
algorithm. It requests one additional pass over A, even the or-
thonormalization is enforced [Martinsson and Voronin, 2016;
Voronin and Martinsson, 2016]. Nevertheless, the single-pass
algorithm works well in many applications.

4 Experiments
All experiments are carried out on a Linux server with two
12-core Intel Xeon E5-2630 CPUs (2.30 GHz), and 32 GB
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RAM. The algorithms are implemented in C with OpenMP
derivatives for multi-thread computing, and MKL libraries
[Int, 2016]. QR factorization and other basic linear algebra
operations are realized through LAPACK routines which are
automatically executed in parallel on the multi-core CPUs.

We first validate the accuracy of the proposed single-pass
algorithm. Then, large test cases stored on hard disk in IEEE
single-precision float format are used to validate the algo-
rithm’s efficiency. In all experiments, the block size b = 10.

4.1 Accuracy Validation
We consider test matrices owning the following singular spec-
trums with different decaying behavior, where σii denotes the
i-th singular value (i.e., a diagonal element of matrix Σ).
• Type 1:

σii =

{
10−4(i−1)/19, i = 1, 2, · · · , 20,
10−4/(i− 20)1/10, i = 21, 22, · · · ,min(m,n).

• Type 2: σii = i−2, i = 1, 2, · · · .
• Type 3: σii = i−3, i = 1, 2, · · · .
• Type 4: σii = e−i/7, i = 1, 2, · · · .
• Type 5: σii = 10−i/10, i = 1, 2, · · · .

Type 1 is from [Halko et al., 2011a], and Type 3 and Type 5
are from [Mary et al., 2015]. These singular value distribu-
tions are shown in Fig. 2. It reveals that the singular values
of Type 1 and Type 2 matrices decay asymptotically slowly,
although they attenuate fast at the start. The singular values
of Type 4 and Type 5 matrices decay asymptotically faster.

Figure 2: Different decay behavior of the singular values of the test
matrices. (a) Normal plot, (b) Semi-logarithmic plot.

(a) Type 2 matrix (b) Type 4 matrix

Figure 3: The computed singular values for a slow-decay and a fast-
decay matrix, showing the accuracy of our algorithm.

Figure 4: The computed singular values and their absolute errors for
a very slow-decay matrix (Type 1), showing the advantage of our
algorithm over Algorithm 2.

For each type, we construct a 3000× 3000 matrix through
multiplying Σ with randomly drawn orthogonal matrices U
and V. We compute the first 50 singular values and singular
vectors for each matrix with the basic randomized Algorithm
1, the existing single-pass algorithm (Algorithm 2) and our
Algorithm 4, and compare the results with the accurate values
obtained by SVD. The over-sampling parameter is set to 10
(i.e., l = 60). Fig. 3 shows the computed singular values of
two matrices, which demonstrates the single-pass algorithm
in [Halko et al., 2011b] produces much larger error, and the
results of Algorithms 1 and 4 are indistinguishable. It also
reveals that the algorithms produce better results for matrices
with asymptotically faster decay of singular values. This is
a common property of the randomized algorithms based on
QB approximation [Halko et al., 2011b; Mary et al., 2015;
Martinsson and Voronin, 2016]. So, we will focus on the
accuracy for the matrices with slow decay of singular values.

For the Type 1 matrix, the accuracy of the randomized
algorithms all decreases; the existing single-pass algorithm
[Halko et al., 2011b] produces considerably large error (up to
1.2×10−2), as shown in Fig. 4. While using the proposed Al-
gorithm 4, we can reduce the maximum error to 1.3×10−4 (∼
92X smaller). Its accuracy looks acceptable. Fig. 5(a) shows
the first principal components (i.e., v1) computed by SVD
and our algorithm respectively, which look indistinguishable
(only 2.8×10−5 difference in l∞-norm). For other principal
components, we calculate the correlation coefficient between
the results obtained with the both methods. As shown in Fig.
5(b), the correlation coefficients are close to 1. The largest
deviation occurs for the 10th principal component, with value
0.9993. For other matrices with faster decay of singular val-

Figure 5: The accuracy of our algorithm on principal components
(with comparison to the results from SVD). (a) The numeric values
of the first principal component (v1). (b) The correlation coefficients
for the first 10 principal components.
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ues (Types 2∼5), the randomized algorithm exhibits better
accuracy and outputs more accurate principal components.

4.2 Runtime Comparison
Following [Halko et al., 2011a], we construct several large
data using the unitary discrete cosine transform (command
“dct” in Matlab). They are 200, 000×200, 000 matrices fol-
lowing the singular value distributions given in last subsec-
tion. Each matrix is stored as a 149 GB file on hard disk.
We use fread function to read the file and run Algorithm 4
for computing PCA. Each time we read l rows of matrix, to
avoid extra memory cost. Once they are loaded into RAM,
the data are converted to the IEEE double-precision format.
Algorithm 1 and Algorithm 2 are also tested for comparison.

Some results for the matrices with slow-decay singular val-
ues are listed in Table 1. l in Algorithm 4 is set to 20 or 30.
tread and tPCA mean the total time (in seconds) for read-
ing the data and the total runtime of the algorithm (includ-
ing tread), respectively. “max err” is the maximum error of
the computed singular values. From the table we see that the
time for reading data dominates the total runtime, and the pro-
posed algorithm is about 2X faster than the basic randomized
algorithm used in [Halko et al., 2011a] while keeping same
accuracy. If comparing Algorithm 2 and ours, we see that the
former may be slightly faster but produces much larger error.

To improve the accuracy, the power scheme with P = 1
could be applied, which corresponds to one more pass over
the data. For Algorithm 4, we just run the while loop once
again with Ω replaced by H after “orth” operation. In our ex-
periments, this two-pass algorithm has similar runtime as Al-
gorithm 1, but dramatically reduces “max err” to 4.6× 10−7

and 3×10−6 for the Type 1 and Type 2 matrices, respectively.
In the experiments, the memory cost of Algorithm 4 ranges

from 402 MB to 490 MB. In contrast, the standard SVD (in-
cluding “svds” in Matlab for truncated SVD) requests much
larger memory than the available physical RAM, and there-
fore does not work. To have a taste of how fast the proposed
randomized algorithm runs, we test a 10,000×10,000 ma-
trix. Performing a complete SVD and “svds” for the first
50 principal components take 226 and 219 seconds, respec-
tively, while the proposed algorithm costs only 0.69 seconds.

4.3 Real Data
We apply the single-pass algorithm with k=50 to the matrix
representing the images of faces from the FERET database
[Phillips et al., 2000]. As in [Halko et al., 2011a], we add
two duplicates for each image into the data. For each dupli-
cate, the value of a random choice of 10% of the pixels is
set to random numbers uniformly chosen from 0, 1, · · · , 255.
Table 1: The results for several 200, 000× 200, 000 data, which
demonstrate the efficiency of our Algorithm 4. (unit of time: second)

Matrix k
Algorithm 1 Algorithm 2 Algorithm 4

treadtPCAmax err treadtPCAmax err treadtPCAmax err

Type1 16 2390 2607 1.7e-3 1186 1404 2.2e-2 1206 1426 1.8e-3
Type1 20 2420 2616 9e-4 1198 1380 1.6e-1 1217 1413 1.2e-3
Type1 24 2401 2593 1e-3 1216 1400 1.5e-1 1216 1414 1.2e-3
Type2 12 2553 2764 5e-4 1267 1477 3e-2 1276 1490 5e-4
Type3 24 2587 2777 1e-5 1312 1500 1.7e-3 1310 1502 2e-5

(a) Computed singular values (b) Four eigenfaces

Figure 6: The computational results for the FERET matrix.

This forms a 102, 042× 393, 216 matrix, whose rows con-
sist of images. Before processing, we normalize the matrix
by subtracting from each row its mean, and then dividing it
by its Euclidean norm. With the proposed algorithm, it takes
1453 seconds (∼ 24 minutes) to process all 150 GB of this
data stored on disk. The computed singular values are plotted
in Fig. 6. We have also checked the computed “eigenfaces”,
which well match those presented in [Halko et al., 2011a].

5 Conclusions
An algorithm for single-pass PCA of large and high-
dimensional data is proposed. It involves only one pass over
the data, and keeps the comparable accuracy to the existing
randomized algorithms. Experiments demonstrate the algo-
rithm’s effectiveness for computing the principal components
of large-size (∼150 GB) data with high dimension that cannot
be fit in memory, in terms of runtime and memory usage.

6 Appendix: Orthogonal Projector Matrix
An orthogonal projector matrix corresponds to a linear trans-
formation which converts any vector to its orthogonal projec-
tion on a subspace. It is uniquely determined by the subspace,
e.g., range(X) corresponding to a projector matrix denoted
by PX . Based on the theory of linear least squares, if X has
full column rank [Golub and Van Loan, 1996],

PX = X(X>X)−1X> . (11)
It is simplified to PX = XX>, if X is an orthonormal ma-
trix. It is easy to see the following properties of a projector.

Lemma 1. For a real-valued matrix X with full column rank,
• PX is a symmetric matrix, and P2

X = PX .
• I − PX is the orthogonal projector determined by the

orthogonal complement of range(X).
• PXX−X = O , where O is the zero matrix.

Acknowledgments
This work was supported by NSFC under grant No.
61422402, and in part by Beijing NSF No. 4172059 and NSF
No. CCF-1066471.

Portions of the research in this paper use the FERET
database of facial images collected under the FERET pro-
gram, sponsored by the DOD Counterdrug Technology De-
velopment Program Office.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3355



References
[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[De Stefani et al., 2016] Lorenzo De Stefani, Alessandro
Epasto, Matteo Riondato, and Eli Upfal. TRIEST: Count-
ing local and global triangles in fully-dynamic streams
with fixed memory size. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2016.

[Drineas and Mahoney, 2016] Petros Drineas and
Michael W Mahoney. RandNLA: Randomized nu-
merical linear algebra. Communications of the ACM,
59(6):80–90, 2016.

[Eckart and Young, 1936] Carl Eckart and Gale Young. The
approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[Friedman et al., 2001] Jerome Friedman, Trevor Hastie,
and Robert Tibshirani. The Elements of Statistical Learn-
ing, volume 1. Springer series in statistics Springer, Berlin,
2001.

[Gittens and Mahoney, 2016] Alex Gittens and Michael W
Mahoney. Revisiting the nyström method for improved
large-scale machine learning. J. Mach. Learn. Res, 17:1–
65, 2016.

[Golub and Van Loan, 1996] Gene H Golub and Charles F
Van Loan. Matrix Computations. Johns Hopkins Univer-
sity Press, 1996.

[Halko et al., 2011a] Nathan Halko, Per-Gunnar Martinsson,
Yoel Shkolnisky, and Mark Tygert. An algorithm for the
principal component analysis of large data sets. SIAM
Journal on Scientific Computing, 33(5):2580–2594, 2011.

[Halko et al., 2011b] Nathan Halko, Per-Gunnar Martins-
son, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate ma-
trix decompositions. SIAM review, 53(2):217–288, 2011.

[Int, 2016] Intel Parallel Studio XE Cluster Edition for
Linux. https://software.intel.com/en-us/
intel-parallel-studio-xe, 2016.

[Liang et al., 2014] Yingyu Liang, Maria-Florina F Balcan,
Vandana Kanchanapally, and David Woodruff. Improved
distributed principal component analysis. In Advances
in Neural Information Processing Systems, pages 3113–
3121, 2014.

[Liberty, 2013] Edo Liberty. Simple and deterministic matrix
sketching. In Proceedings of the 19th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, pages 581–588. ACM, 2013.

[Martinsson and Voronin, 2016] P.-G. Martinsson and
S. Voronin. A randomized blocked algorithm for ef-
ficiently computing rank-revealing factorizations of
matrices. SIAM Journal on Scientific Computing,
38(5):S485–S507, 2016.
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