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Abstract
Given a large-scale rhythmic time series contain-
ing mostly normal data segments (or ‘beats’), can
we learn how to detect anomalous beats in an ef-
fective yet efficient way? For example, how can
we detect anomalous beats from electrocardiogram
(ECG) readings? Existing approaches either re-
quire excessively high amounts of labeled and bal-
anced data for classification, or rely on less reg-
ularized reconstructions, resulting in lower accu-
racy in anomaly detection. Therefore, we propose
BeatGAN, an unsupervised anomaly detection al-
gorithm for time series data. BeatGAN outputs
explainable results to pinpoint the anomalous time
ticks of an input beat, by comparing them to ad-
versarially generated beats. Its robustness is guar-
anteed by its regularization of reconstruction error
using an adversarial generation approach, as well
as data augmentation using time series warping.
Experiments show that BeatGAN accurately and
efficiently detects anomalous beats in ECG time
series, and routes doctors’ attention to anomalous
time ticks, achieving accuracy of nearly 0.95 AUC,
and very fast inference (2.6 ms per beat). In ad-
dition, we show that BeatGAN accurately detects
unusual motions from multivariate motion-capture
time series data, illustrating its generality.

1 Introduction
How can we detect anomalous time series segments (‘beats’)
in large-scale rhythmic time series data? A major application
of this is for detecting cardiac arrhythmias, which cause mil-
lions of deaths annually around the world [Kiranyaz et al.,
2017]. With the rapid growth in availability of medical sen-
sor data such as ECG, blood pressure etc., anomaly detec-
tion in medical time series has become an increasingly im-
portant topic of research[Hagiwara et al., 2018]. More gener-
ally, anomalous time series segment detection is valuable for
analyzing time series sensor data of many kinds: industrial,
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environmental, video, and so on. In particular, we use multi-
variate motion-capture data, collected from sensors worn by
people, to detect unusual segments.

A key goal in this process is explainability: in medical
and other domains, anomalies are best responded by domain
experts who need to know not just whether an anomaly is
present, but also understand its mechanism. This leads to the
following questions:

How can we automatically detect anomalous beats when
monitoring multivariate time series? Can we pinpoint the
anomalous time ticks that led to our decision?

Further challenges are: 1) massive time series can contain
few anomalies, which is insufficient and imbalanced for su-
pervised classification; 2) anomalous segments can be very
different from one another, e.g. some anomalous heartbeats
are never seen in defined categories; 3) even in healthy pa-
tients, the time periods involved in various heartbeat charac-
teristics (e.g. P waves, QRS complex, P-R and R-R intervals)
vary from one beat to another.

Reconstruction-based anomaly detection generally uses
implicit low-dimensional representations of data, e.g. in
FBOX [Shah et al., 2014] via SVD decomposition. Autoen-
coders (AE) [An and Cho, 2015] allow for more complex
patterns by applying nonlinear functions for reconstruction
and anomaly detection. However, without proper regulariza-
tion, such a reconstruction easily leads to overfitting, result-
ing in low accuracy. Generative adversarial networks (GANs)
jointly learn to generate realistic synthetic data while learning
a discriminator [Goodfellow et al., 2014]: we use this to pro-
vide an intuitive approach for regularizing the reconstruction
error.

Therefore, we propose an anomaly detection model, Beat-
GAN, which detects anomalies using adversarially generated
time series as shown in Fig 1. The model additionally pro-
vides explainable results, pinpointing the time ticks that led
to our decision.

BeatGAN reconstructs the data robustly, and performs reg-
ularization using an adversarial generation approach. To fur-
ther improve its accuracy, we exploit the characteristics of
rhythmic time series by designing a warping method to aug-
ment training data in our proposed BeatGAN method. Ex-
periments show that BeatGAN detects anomalies accurately
in both ECG data from the MIT-BIH arrhythmia database,
and sensor time series data from the CMU Motion Capture
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database.
In summary, our main contributions are as follows:

- Anomaly detection from normal time series: We pro-
pose BeatGAN, a reconstruction-based method using
generative adversarial networks, for detecting anoma-
lous time series. Taking advantage of adversarial reg-
ularization, BeatGAN is robust. Moreover, it uses time
series warping for data augmentation to improve detec-
tion accuracy.

- Effectiveness: BeatGAN far outperforms existing state-
of-the-art methods in identifying anomalies in ECG time
series, achieving accuracy of nearly 0.95 AUC, and very
fast inference (2.6 ms per beat).

- Explainability: BeatGAN pinpoints the time ticks
involved in the anomalous patterns, providing inter-
pretable output for visualization and attention routing
(see Fig 1).

- Generality: BeatGAN successfully detects unusual mo-
tions from multivariate sensor time series from the CMU
Motion Capture database.

Reproducibility: BeatGAN is open-sourced 1.

2 Related Work
Time series mining and anomaly detection methods can be
categorized into three categories.

Classification-based Methods
Supervised classification approaches require a large amount
of labeled data, and either manually defined features or hid-
den variables learnt from deep models. Given enough labeled
data, this method can achieve high accuracy [Rajpurkar et al.,
2017]. However, the labeled data is usually difficult to ob-
tain in practice. Furthermore, it has difficulty generalizing to
anomalies which differ significantly from those it has seen,
e.g. when new types of anomalies appear. Based on these de-
fects, [Schölkopf et al., 2000] proposed One-Class SVM, an
unsupervised model which learns from normal data to iden-
tify anomalies on unseen data.

Vocabulary-based Methods
Vocabulary-based methods learn a set of models for time
series segments, e.g. learning separate models for nor-
mal and abnormal heartbeats. Hidden Markov Models
(HMMs) [Baum and Petrie, 1966] are classic vocabulary-
based method. Variants include DynaMMo [Li et al.,
2009] which uses Dynamic Bayesian Networks, and Auto-
Plait [Matsubara et al., 2014] which uses two-level HMMs.
Recent work [Hooi et al., 2017] proposed a vocabulary ap-
proach named BEATLEX which performs segmentation and
forecasting by optimizing minimum description length. The
rare patterns in the vocabulary are regarded as anomalies.

Reconstruction-based Methods
Anomalies can be defined as events that deviate significantly
from the patterns observed in real data. Thus, many works de-
tect anomalies by computing a synthetic reconstruction of the

1https://github.com/Vniex/BeatGAN
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Explains anomalies X X X X

Robust X X X X X
Fast inference X X X X X X

Table 1: Comparison of related approaches

data, and then measuring the deviation between an observed
instance and its reconstruction. Principal Component Analy-
sis (PCA) can be used to reconstruct the data, but only allows
for linear reconstruction. Autoencoders can also be used for
deep-learning based anomaly detection by inspecting its re-
construction error. [An and Cho, 2015] used autoencoders
(AE) and variational autoencoders (VAE) for anomaly detec-
tion on several benchmark datasets.

Recently, with the growing interest in generative adversar-
ial networks, researchers have proposed anomaly detection
using adversarial training. AnoGAN [Schlegl et al., 2017]
and Ganomaly [Akcay et al., 2018] are both originally pro-
posed for anomaly detection on visual data, while ours is de-
signed for a series of real numbers which need robustness
against speed variations. AnoGAN needs to learn a latent
vector for every input for anomaly detection, which is very
time consuming and limits its application. Ganomaly uses an
encoder-decoder-encoder structure, and identify the anoma-
lies by comparing the latent representations. Our BeatGAN
uses data reconstructions, resulting in a more concise model
and better performance for time series data. Meanwhile,
BeatGAN can give explainable results with such a reconstruc-
tion.

Other approaches include [Song et al., 2017; Hooi et al.,
2018; Chen et al., 2018], which proposed tensor decomposi-
tion based methods for time series forecasting and detecting
anomalies based on the forecast. [Le Guennec et al., 2016]
proposed a data augmentation method, ‘window warping’ for
time series data.

BeatGAN provides an explainable approach combining au-
toencoders and generative adversarial networks, incorporat-
ing the advantages of both models. Table 1 summarizes ex-
isting works related to our problem. Only BeatGAN satisfies
all the desired characteristics.

3 Proposed Model
Let T ∈ RM×N be a multivariate time series, which is N
time ticks in length, and has M dimensions for each time
tick, e.g. reading from M sources. A rhythmic time series
T contains sub-series, i.e. beats. For example, a beat in ECG
time series consists of a sequence of a P wave followed by a
QRS complex, T and U waves. We fix the window size for
a beat in time series, and beats are denoted as x ∈ RL×N ,
where L is large enough for containing a beat. Zero-padding
or sampling can be used for fitting irregular beats in such a
window if we know the exact length of each beat.

Most beats in time series are normal in practice, and the
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Figure 1: BeatGAN successfully detects anomalous rhythms, and explains the results. The size of training input is 28.6 million time ticks,
and inference can be as fast as 2.6 ms per beat. The original beat is shown by solid lines, and the generated beat is shown by dashed lines.

amount of beats is massive. Our anomaly detection problem
can then be described as follows:
Informal Problem 1 (Anomalous beat detection) Given a
collection of multivariate time series beats X = {xi, i =
1, 2, . . . , } with most of beats in the normal class,

- Detect anomalous beats x in a collection of unseen time
series,

- Such that they deviate significantly from the recon-
structed time series, and can pinpoint anomalous time
ticks in x for explanation.

3.1 General Framework
Fig 1 shows the framework of our proposed method. First,
we preprocess the ECG data and train the model with normal
heartbeats. At test time, for each unseen beat x, we feed it into
the trained model and obtain the generated beat x′ (showed by
dashed lines in Fig. 1). By comparing the residuals between
x and x′, we capture the anomalies.

In general, the framework for detecting anomalies based on
reconstruction error has two components: reconstruction (or
generation) model optimization, and anomalousness scoring
based on reconstruction.

The optimization objective for learning the reconstruction
model is:

L = ||X −G(X)||2 +R(G)

=
∑
x

||x−G(x)||2 +R(G) (1)

where X is a matrix concatenating each beat matrix x ∈ X
along its columns. G(·) is the reconstructed model, andR(G)
is the regularization term for different models (parameters).

Then, the anomalousness score for x is calculated as:

A(x) = ||x−G(x)||2 (2)

This framework is general in that many reconstruction-
based anomaly detection methods can be formalized as ob-
jective (1) for training, and use anomalousness score (2). As
we can see from Table 2, SVD, AE, VAE and our BeatGAN
for anomaly detection have their specific forms of reconstruc-
tion function G(·), and regularization loss R(G) for recon-
struction model optimization. The SVD-based methods re-
construct data using low-rank approximation. ui and vi are

Method G(·) R(G)

SVD/ FBOX
∑p
k=1 σkukv

T
k

λ1
∣∣∣∣I − UTU ∣∣∣∣

2
+

λ2
∣∣∣∣I − V TV ∣∣∣∣

2

AE GD(GE(x)) /
VAE GD(GE(x)) λDKL[Q(z|x)||P (z)]
BeatGAN GD(GE(x)) adversarial regularization

Table 2: Unifying the reconstruction-based methods for anomaly
detection. G(·) is the reconstruction function, R(G) is the regular-
ization loss

the i-th columns of U and V respectively obtained by sin-
gular value decomposition. FBOX uses the same reconstruc-
tion model as SVD, but uses a different anomalousness score
which applies a threshold based on percentiles of the recon-
structed distribution.

The AE- and VAE-based methods, and BeatGAN recon-
struct data using an encoder network GE(·) and decoder net-
work GD(·). While AE-based methods do not have any ex-
plicit regularization, VAE-based methods use the KL diver-
gence between the approximate posterior distribution Q(z|x)
learned by the encoder, and the prior distribution P (z) of the
latent variable z. Our BeatGAN uses adversarial regulariza-
tion in its training process.

We will show in the following how BeatGAN regularizes
its reconstruction, taking the benefits from generative adver-
sarial networks (GAN).
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Figure 2: Illustration of our network structure
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3.2 Proposed Model with Adversarial
Regularization

As illustrated in Fig 2, to reconstruct time series x, autoen-
coders have two components: an encoder GE(x) and a de-
coder GD(z). GE(x) encodes the input x to a hidden vector
z that represents its important features. Then GD(z) gen-
erates a time series x′ from the hidden vector z. Thus our
reconstruction is G(x) = GD(GE(x)).

As for both encoder and decoder networks, we use the
same network structure, i.e. convolutional neural network
(CNN) with filters sliding in one dimension along the tem-
poral dimension. We use CNNs because many studies
show that CNN networks are more robust than LSTMs for
time series [Rajpurkar et al., 2017]. Moreover, with an
appropriately-sized CNN reception field, we can also capture
long-term dependencies as in LSTMs.

In terms of regularization, we use the GAN framework in
our autoencoder. In such a framework, the generator and the
discriminator compete in a two-player min-max game. The
discriminator tries to distinguish real samples from synthe-
sized samples and the generator tries to generate samples that
can fool the discriminator. As we can see from the bottom
part in Fig 2, the discriminator D(·) tries to maximize the
loss function:

LD = Ex∼Pr [logD(x)] + Ez∼Pz [log(1−D(G(z)))] (3)

which discriminates the generated x′ from x as different class
label 0 and 1. The generatorG tries to minimize the following
loss function

LG = Ez∼Pz
[log(1−D(G(z)))] (4)

which makes the generation unable to be discriminated by
D(·), i.e. close to class label 1.

In practice, directly using LG as adversarial regularization
does not perform well due to the diminished gradient and
mode collapse. Thus, instead of having the original x and
vector z in hidden space, we have set up the relationship be-
tween the original x and reconstructed x′ via an autoencoder.
Therefore, we use pairwise feature matching loss which mini-
mizes differences of the statistics between original and gener-
ated time series, learned in hidden layers of the discriminator
D(·). Letting fD(·) be the activation vector on a hidden layer
of the discriminator, pairwise feature matching loss between
x and x′ is:

Lpfm = ||fD(x)− fD(x′)||2 (5)

Overall, the objective of reconstruction with adversarial
regularization is to minimize the following loss function:

LG = ||x− x′||2 + λ ||fD(x)− fD(x′)||2 (6)

where x′ = G(x), and λ is the weighting parameter adjusting
the impact of the adversarial regularization. Meanwhile, the
objective of the discriminator is to maximize the following
loss function:

LD =
1

N

N∑
i

[logD(xi) + log(1−D(x′i))] (7)

Algorithm 1 Training algorithm

1: θG, θD← initialize network parameters
2: for number of training iterations do
3: Sample {x1, ..., xm} ∼ a batch from the normal data
4: Generate {x′1, ..., x′m} by GE and GD
5: Compute LD by Eq (7)
6: θD ←− θD + α∇θD (LD) //∇ is the gradient
7: Compute LG by Eq (6)
8: θG ←− θG + α∇θG(LG)
9: end for

Finally, we use the Adam optimization algorithm [Kingma
and Ba, 2014] for learning the reconstruction model, as sum-
marized in Alg 1.

To perform anomaly detection, we use the reconstruction
model to reconstruct a time series x′ using our model trained
on normal data, for given x. We then evaluate the anomalous-
ness score by comparing the difference between x′ and x as
in Eq (2). Since anomalies always occur in a portion of time
ticks of a beat, the residuals between ticks of x and x′ can in-
dicate where the anomaly occurs, routing users’ attention to
the anomalous portion and providing an explanation.

3.3 Data Augmentation Using Time Warping
Time series have a special similarity metric, dynamic time
warping (DTW) [Vintsyuk, 1968], which measures similar-
ity in a way that is more robust against variations in speed
(i.e. ‘time warping’). For example, heartbeats naturally and
slightly speed up or slow down. However, since DTW is
not differentiable, we cannot directly use it for reconstruc-
tion error in objective (6). Instead, we propose a modified
time warping for data augmentation to make our model ro-
bust against natural variability involving time warping in real
time series.

We augment our training data as follows. For each train-
ing beat x, we sample uniformly at random a small number
k of time ticks to “slow down” and a different k time ticks
to “speed up”. For each time tick to “speed up”, we delete
the data value at that time tick. For each time tick to “slow
down”, we insert a new data value just before that time tick,
whose value is set to the average of the data values at the 2
adjacent time ticks. This results in a modified version of x,
which we use as additional training data for our model.

4 Experiments
We design experiments to answer the following questions:
Q1. Accuracy: How accurate is BeatGAN with/without
data augmentation compared with state-of-the-art baselines?
Q2. Explainability: How well does BeatGAN pinpoint
anomalous portions of input, and route people’s attention?
Q3. Efficiency: How fast is BeatGAN’s inference?

4.1 Data
We evaluate our proposed model on ECG time series from
MIT-BIH Arrhythmia Database2 [Moody and Mark, 2001].

2https://physionet.org/cgi-bin/atm/ATM?database=mitdb
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Figure 3: Example of anomaly detection on motion capture time series(4-dimensions). The right side shows the original time series and
heatmaps to pinpoint the anomalies of jumping/running/hopping from walking motions.

and motion capture data from the CMU motion capture
database3.

MIT-BIH ECG dataset. The MIT-BIH arrhythmia dataset
contains 48 ECG records from test subjects from Beth Israel
Hospital. The ground-truth labels are annotated on the R-
peak of each beat by two or more independent cardiologists
indicating positions and types of each heartbeat. As recom-
mended by the AAMI [AAMI, 1998], the normal beats in-
clude the beats annotated with label N, L and R4, and the
records named 102, 104, 107 and 218 are removed due to in-
sufficient signal quality. In total, the dataset contains 97,568
beats, and 28.6 million time ticks.

CMU Motion Capture dataset. The dataset contains
motion-captured subjects performing different motions
(walking, jogging, running, etc.). We choose 4 dimensions
from different sensors on the subject’s body, i.e. left-right
arms and legs. We select 16 walking records of 6,616 ticks in
total, 10 jogging records of 1,608 ticks in total, and 1 jumping
record of 2,085 ticks for training and testing separately. Thus
we obtain 10,309 time ticks in total. In experiments, we
normalize each time series x between -1 and 1 by min-max
scaling. 5

4.2 Q1. Accuracy
BeatGAN gives the anomalousness score for each time se-
ries, i.e. S = {si : A(xi), xi ∈ Z} for a given evaluation
set Z . To calculate metrics, we first standardize the scores
between 0 and 1 by min-max scaling. Then we calculate the
two metrics, AUC (Area Under ROC Curve) and AP (Aver-
age Precision) [Davis and Goadrich, 2006].

Evaluation on ECG Dataset
Experimental setup. We first use a filter [Carreiras et al.,
2015 ] to remove the noise in ECG sequences. We choose
320 time ticks as the window size for a beat: 140 time ticks
before the given R-peak and 180 ticks after it. We set the di-
mension size of latent space as 50, λ = 1.0 for objective (6)

3http://mocap.cs.cmu.edu/
4N is Normal beat, L is Left bundle branch block beat and R is

Right bundle branch block beat
5https://en.wikipedia.org/wiki/Feature scaling#Rescaling

(min-max normalization)

and k = 16 for data augmentation. We also set an experiment
of adding anomalous data to training data for evaluating ro-
bustness. The structure of GD learns the architecture of the
generator from DCGAN [Radford et al., 2015]. We use 5 1D
transposed convolutional layers followed by batch-norm and
leaky ReLU activation, with slope of the leak set to 0.2. The
transposed convolutional kernel’s size and number of each
layer are 512(10/1)-256(4/2)-128(4/2)-64(4/2)-32(4/2): e.g.
512(10/1) means that the number of filters is 512, the size
of filter is 10 and the stride is 1. GE’s structure is a mir-
rored version of GD and D has the same architectural details
as GE . We use Adam optimizer with an initial learning rate
lr = 0.0001, and momentums β1 = 0.5, β2 = 0.999. More-
over, we use 5-fold cross-validation for each method, and re-
port the averaged metrics and standard deviations (std).

Result. We compare the performance with PCA-based
anomaly detection, one-class SVM (OCSVM) for anomalous
class (using the top 50 features selected by PCA method),
autoencoders (AE), variational AE (VAE), AnoGAN, and
Ganomaly as shown in Table 3. The averaged results and std
are reported. The results show that both BeatGAN and Beat-
GAN with data augmentation perform the best among the
baselines ( p-value<0.01), and the data augmentation does
help BeatGAN achieve more accurate results due to the inclu-
sion of additional training data. Besides, the non-linear meth-
ods (AE, VAE, AnoGAN, Ganomaly, and our BeatGANs)
generally have better performance in both AUC and AP as
compared to PCA and OCSVM, providing evidence that non-
linear models have advantages on the complex ECG time se-
ries.

Evaluation on Motion Capture Dataset
Experimental setup. In this experiment, walking is con-
sidered as our normal class. We evaluate BeatGAN on de-
tecting unusual motions of jogging and jumping time series.
We slide a window of 64 time ticks along the original multi-
variate time series to generate beats, and the stride size for the
sliding window is 5 ticks. Thus we obtain 1,729 beats, with
10,309 time ticks in total, some of which overlap. Since
the data is sparse and small, we concatenate the x ∈ R4×64

as a 256-dimensional vector as input. We use the same MLP
structure with the sizes in layers as 256-128-32-10 forGE(·),
256-128-32-1 forD(·), and 10-32-128-256 for GD(·). The
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Method AUC AP
PCA 0.8164± 0.0037 0.6522± 0.0061
OCSVM 0.7917± 0.0018 0.7588± 0.0027
AE 0.8944± 0.0128 0.8415± 0.0163
VAE 0.8316± 0.0025 0.7882± 0.0024
AnoGAN 0.8642± 0.0100 0.8035± 0.0069
Ganomaly 0.9083± 0.0122 0.8701± 0.0141
BeatGAN 0.9447± 0.0053 0.9108± 0.0049
BeatGANaug 0.9475± 0.0037 0.9143± 0.0047
BeatGAN0.1%

aug 0.9425± 0.0022 0.8973± 0.0042

Table 3: BeatGAN performs the best for anomalous rhythm detec-
tion in ECG data. In BeatGANaug , we augment the training data
size to 3× with time warping. In BeatGAN0.1%

aug , we add the 0.1%
anomalous time series to the training data for evaluating robustness.
5-fold cross-validations are run, and mean and std are given.

dimension size of latent space is 10 and λ = 0.01.
Result. Fig 4 shows the histogram of normalized anoma-
lousness scores on evaluation data. The results show that
the score distributions of walking and others are clearly sep-
arated. Hence the AUC and AP metrics both achieve 1.0,
which means our BeatGAN can perfectly discriminate be-
tween unusual motions (jogging/jumping) and usual motions
(walking), by only using time series of walking for training.

0.0 0.2 0.4 0.6 0.8 1.0

walk

others

Figure 4: Normalized anomalousness score distributions.

4.3 Q2. Explainability
Next, we show that BeatGAN can pinpoint the time ticks
when the anomalous pattern occurs. In the right part of Fig 1,
we compute the residual for each time tick between input
beat and generated beat: res(t) = (x(t) − x′(t))2 at time
t , and show the heatmap of residual values. As we ob-
serve, our model gives high anomalousness scores for the ab-
normal beat (top right) and low anomalousness scores for the
normal beat (bottom right). This abnormal beat is a ‘ventric-
ular escape beat’ and our model correctly identifies that the
abnormal time ticks occur in its QRS complex (circled re-
gion). Besides, our model generates the “normal” generated
beat (dashed lines), which provides additional explainability
by allowing users to compare the generated beat to the ob-
served beat, to understand how the observed beat differs.

In Fig 3, the left time series is the record of walking. On
the right, we illustrate the results of a jogging, jumping or
hopping time series, using a heatmap whose color indicates

the size of the residual at each time tick. We compute the
residual for each time tick by res(t) = max(x(t) − x′(t))2,
where x(t) is a 4-dimensional vector at time t, and max
takes the max value over the 4 dimensions, which we use
as the anomalousness score of time tick t. The heatmap
shows that BeatGAN cannot well reconstruct the time series
of jogging/jumping/hopping, thus correctly assigning them
high anomalousness, since we only use walking time series
for training.

4.4 Q3. Efficiency
BeatGAN is fast for inference at test time, since the adver-
sarial generation of BeatGAN is one-pass through the feed-
forward neural network. In contrast, the baseline AnoGAN
needs iterative computation to find the corresponding latent
vector for given time series, and Ganomaly has another en-
coder network which is more complex than BeatGAN.

We ran the inferences of BeatGAN, AnoGAN and
Ganomaly, which use neural networks, on a server with a
Tesla K80 GPU, on ECG data, all implemented in PyTorch.
We set the iteration number of AnoGAN as 500 as in [Schlegl
et al., 2017]. Fig 5 (the y-axis is a logarithmic scale) shows
that BeatGAN only takes 2.6 ms per beat, which is 1.5×
faster than Ganomaly and 1415× faster than AnoGAN.

1415×

1.5×
3.91

3681.00

2.60

Figure 5: BeatGAN has fast inference (2.6ms).

5 Conclusions
We propose an anomaly detection algorithm for anomalous
beats based on adversarially generated time series. BeatGAN
has the following advantages: 1) Unsupervised: it is applica-
ble even when labels are unavailable; 2) Effectiveness: Beat-
GAN outperforms baselines in both accuracy and inference
speed, achieving accuracy of nearly 0.95 AUC on ECG data
and very fast inference (2.6 ms per beat). 3) Explainability:
BeatGAN pinpoints the anomalous ticks as shown in Fig 1; 4)
Generality: BeatGAN also successfully detects unusual mo-
tions in multivariate motion-capture database.
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