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Abstract. We are now witnessing the increasing availability of event
stream data, i.e., a sequence of events with each event typically being
denoted by the time it occurs and its mark information (e.g., event type).
A fundamental problem is to model and predict such kind of marked tem-
poral dynamics, i.e., when the next event will take place and what its
mark will be. Existing methods either predict only the mark or the time
of the next event, or predict both of them, yet separately. Indeed, in
marked temporal dynamics, the time and the mark of the next event are
highly dependent on each other, requiring a method that could simul-
taneously predict both of them. To tackle this problem, in this paper,
we propose to model marked temporal dynamics by using a mark-specific
intensity function to explicitly capture the dependency between the mark
and the time of the next event. Experiments on two datasets demonstrate
that the proposed method outperforms the state-of-the-art methods at
predicting marked temporal dynamics.
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1 Introduction

There is an increasing amount of event stream data, i.e. a sequence of events
with each event being denoted by the time it occurs and its mark information
(e.g. event type). Marked temporal dynamics offers us a way to describe this data
and potentially predict events. For example, in microblogging platforms, marked
temporal dynamics could be used to characterize a user’s sequence of tweets
containing the posting time and the topic as mark [9]; in location based social
networks, the trajectory of a user gives rise to a marked temporal dynamics,
reflecting the time and the location of each check-in [15]; in stock market, marked
temporal dynamics corresponds to a sequence of investors’ trading behaviors,
i.e., bidding or asking orders, with the type of trading as mark [4]; An ability
to predict marked temporal dynamics, i.e., predicting when the next event will
take place and what its mark will be, is not only fundamental to understanding
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the regularity or patterns of these underlying complex systems, but also has
important implications in a wide range of applications, from viral marketing
and traffic control to risk management and policy making.

Existing methods for this problem fall into three main paradigms, each with
different assumptions and limitations. The first category of methods focuses on
predicting the mark of the next event, formulating the problem as a discrete-
time or continuous-time sequence prediction task [12,25]. These methods gained
success at modeling the transition probability across marks of events. However,
they lack the power at predicting when the next event will occur.

The second category of methods, on contrary, aims to predict when the next
event will occur [10]. These methods either exploit temporal correlations for
prediction [20,22] or conduct prediction by modeling the temporal dynamics
using certain temporal process, such as self-exciting Hawkes process [2, 6], various
Poisson process [9,21], and other auto-regressive processes [8,16]. These meth-
ods have been successfully used in modeling and predicting temporal dynamics.
However, these models are unable to predict the mark.

In recent years, researchers attempt to directly model the marked temporal
dynamics [11]. A recent work [7] used recurrent neural network to automatically
learn history embedding, and then predict both, yet separately, the time and
the mark of the next event. This work assumes that time and mark are indepen-
dent on each other given the historical information. Yet, such assumption fails
to capture the dependency between the time and the mark of the next event.
For example, when you have lunch is affected by your choice on restaurants,
since different restaurants imply difference in geographic distance and quality of
service. The separated prediction by maximizing the probability on mark and
time does not imply the most likely event. In sum, we still lack a model that
could capture the interdependency of mark and time when predicting the next
event.

In this paper, we propose a novel model based on recurrent neural network
(RNN), named RNN-TD, to capture the dependence between the mark of an
event and its occurring time. The key idea is to use a mark-specific intensity
function to model the occurring time for events with different marks. The benefits
of our proposed model are three-fold: (1) It models the mark and the time of
the next event simultaneously; (2) The mark-specific intensity function explicitly
captures the dependency between the occurring time and the mark of an event;
(3) The involvement of RNN simplifies the modeling of dependency on historical
events.

We evaluate the proposed model by extensive experiments on large-scale
real world datasets from Memetracker! and Dianping?. Compared with several
state-of-the-art methods, RNN-TD outperforms them at prediction of marks and
times. We also conduct case study to explore the capability of event prediction
in RNN-TD. The experimental results indicate that it can better model marked
temporal dynamics.

! http://www.memetracker.org.
2 http://www.dianping.com.


http://www.memetracker.org
http://www.dianping.com

788 Y. Wang et al.

2 Model

In this paper, we focus on the problem of modeling marked temporal dynamics.
Before diving into the details of the proposed model, we first clarify two main
motivations underlying our model.

2.1 Motivation

In real scenarios, mark and time of next event are highly dependent on each
other. We use a case from Dianing to illustrate this phenomenon. We extract the
trajectories starting from the same location (mark #6) and examine if the time
interval between two consecutive events are discriminative to each other with
respect to different marks. The distribution of time interval with different target
marks are represented in Fig. 1(a). We can observe that large variance exists in
the distributions when consumers make different choices. This motivates us to
model mark-specific temporal dynamics.

Second, existing works [12] attempted to formulate marked temporal dynam-
ics by Markov random processes with varying orders. However, the generation
of next event requires strong prior knowledge on dependency of history. Besides,
long dependency on history causes state-space explosion problem in practice.
Therefore, we propose a RNN-based model which learns the dependency by deep
structure. It embeds history information into vectorized representation when
modeling sequences. The generation of next event is only dependent on history
embedding.

Time interval distribution
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[ — expectation
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- target to mark #9

target to mark #13
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Fig.1. (a) High variance existed in time interval distribution when targeting to
different marks. (b) The architecture of RNN-TD. Given the event sequence S =
{(ts, ei) }i=1, the i-th event (¢;,e;) is mapped through function ¢(t) and ¢(e) into vec-
tor spaces as inputs in RNN. Then the inputs ¢(¢;) and ¢(e;) associated with the last
embedding h;_1 are fed into hidden units in order to update h;. Dependent on embed-
ding h;, RNN-TD outputs the next event type e;+1 and correspondent time ¢;41.
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2.2 Problem Formulation

An event sequence S = {(t;,€;)} is a set of events in ascending order of time.
The tuple (¢;,e;) records the i-th event in the sequence S, and the variables
t; € T and e; € £ denote the time and the mark respectively, where £ is a
countable state space including all possible marks and 7 € RT is the time
space in which observed marks take place. We could have various instantiation
in different applications.

The likelihood of an observed sequence S can be written as

[S|
P(S) = Hp(tivei‘Hti)’
=1

where Hy, = {(t;,e1)|t; < t;,e; € E} refers to all the historical events occurring
before t;. In practice, the joint probability of a pair of mark and time can be
written by Bayesian rule as follows

p(ti,ei|Hy,) = r(ei|Hy,)s(tiles, Hy, ), (1)

where 7(e;|Hy,) refers to the probability that the mark of next event is e; and
s(ti|es, He,) is the probability distribution function of time given a specific mark.

Next we propose a general model to parameterize r(e;|Hy,) and s(t;|e;, Hy,)
in marked temporal dynamics modeling, named RNN-TD. Recurrent neural net-
work (RNN) is a feed-forward neural network for modeling sequential data. In
RNN, the current inputs are fed into hidden units by nonlinear transformation,
jointly with the outputs from the previous hidden units. The feed-forward archi-
tecture is replicative in both inputs and outputs so that the representation of
hidden units is dependent on not only current inputs but also encoded historicial
information. The adaptive size of hidden units and nonlinear activation function
(e.g., sigmoid, tangent hyperbolic or rectifier function) make neural network
capable of approximating arbitrary complex function [3].

The architecture of RNN-TD is depicted in Fig. 1(b). The inputs of an event
(t;, e;) is vectorized by mapping function ¢(-) and ¢(+). Then the i-th inputs asso-
ciated with the last embedding h;_; are fed into hidden units in order to update
h;. Given the i-th event (¢;, e;), the embedding h;_; and mapping function ¢ and
, the representation of hidden units in RNN-TD can be calculated as

hi =0 (Wht¢(tl) + Whe<,0(ei) + Whhhifl)v (2)

where o is the activation function, and W"*, W€ and W"" are weight matrices in
neural network. The procedure is iteratively executed until the end of sequence.
Thus, the embedding h; encodes the i-th inputs and the historical context h; 1.

Based on the history embedding h;, we can derive the probability of the
(i + 1)-th event in an approximative way,

p(tiv1,eiv1|He, y) = p(tivr, eir1lhi) = r(eiva|hi)s(tivileirs, hi). (3)
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Firstly we formalize the conditional transition probability r(e;41]h;). The
conditional transition probability can be derived by a softmax function which
is commonly used in neural network for parameterizing categorical distribution,
that is,

exp (W2Ph;
r(eit1|hi) = —% (Wi })L ,
Zj:1 exp (W]f" hz)

(4)

where row vector Wlf‘h is k-th row of weight matrix indexed by the mark e; 1.

Then we consider the probability distribution function s(t;11|eit+1,h:). The
probability distribution function describes the observation that nothing but mark
eir1 occurred until time t; 1 since the last event. We define a random variable T,
as the occuring time of next event with mark e, and the probability distribution
function s(t;41/e;+1, ki) can be formalized as

s(tisaleirn,hi) = P(Tey, = tinileirn,he) [ P(Te > tinalens i), (5)

e€€\eit1

where the probability P(T. > t;y1]e;+1,h;) depicts that the occuring time of
event with mark e is out of the range [0,¢;11], and P(T,,., = tit1|eir1,hi) is
the conditional probability density function representing the fact that mark e; ;1
occurs at tijq1.

To formalize the Eq.(5), we define mark-specific conditional intensity
function [1]

fe(tivaleiv1, hi)
Ae(t; = , 6
e(ti+1) 1 — Fe(tig1leit1, hi) ©

where F.(t;+1]€i+1,hi) is the cumulative distribution function of fe(t;+1|eit1,
h;), referring to the probability that mark e; 1 will happen in [0, ¢;41]. According
to Eq. (6), we can derive the cumulative distribution function

tit1
Fultisaleisn, hi) = 1 — exp(— / Ao(7)dr). (M)
t;

Thus, we have P(Te > ti+1|61‘+1, hz) =1- Fe(ti+1|€i+17 hl) Then we can derive
the mark-specific conditional probability density function by Eq. (7) as

tit1
P(Te = tiyaleiv1, hi) = fe(tivileit1, hi) = Ae(tit1) eXP(*/ Ac(t)dt). (8)
123
Substituting Egs. (7) and (8) into the likelihood of Eq. (5), we can get
tit1
s(tiv1leirr, hi) = Aeiyy (tig1) exp(—/ A(t)dt), (9)
t;

where A\(7) = D _c¢ Ae(7) is the summation of all conditional intensity function.
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The key to specify probability distribution function s(¢;y1|ei+1,h;) is para-
meterization of mark-specific conditional intensity function .. We parameterize
Ae conditioned on h; as follows,

Ae(t) = ve - T(t;t;) = exp (W) 7(t5t:), (10)

where row vector W} " denotes to the k-th row of weight matrix corresponding
to mark e. In Eq. (10), the mark-specific conditional intensity function is splited
into two parts: v, = exp(Wj’-’,hhi) is a nonnegative scalar as the constant part
with respect to time ¢, and 7(¢;¢;) > 0 refers to an arbitrary time shaping
function [10]. For simplicity, we consider two well-known parametric models for
time shaping function: exponential and constant, i.e., exp(wt) and c.

Given a collection of event sequences C = {S,,}N_,, we suppose that each
event sequence S,, is independent on each other. As a result, the logarithmic
likelihood of a set of event sequences is the sum of the logarithmic likelihood
of the individual sequence. Given the source of event sequence, the negative
logarithmic likelihood of the set of event sequences C can be estimated as,

N [Sm|-1 K
L@==3 3 |Wi"hi—log> exp (Wih:)
m=1 i=1 i=1
tit1
+ W]é/hhi +log 7(t;t;) — Zexp (W;’,hhi) / T(t; ti)dt:| .
ecé ti

In addition, we want to induce sparse structure in vector v in order that not all
event types are available to be activated based on h;. For this purpose, we intro-
duce lasso regularization on v, i.e., ||v||1 [23]. Overall, we can learn parameters
of RNN-TD by minimizing the negative logarithmic likelihood

argmin £(C) + [, (11)

where 7 is the trade-off parameter.

Finally, we estimate the next most likely events in two steps by RNN-TD:
(1) estimate the time of each mark by expectation t;11 = f:o t - s(tlei+1, hi)dt;
(2) calculate the likelihood of events according to the mark-specific expectation
time, and then rank events in descending order of likelihood.

3 Optimization

In this section, we introduce the learning process of RNN-TD. We apply back-
propagation through time (BPTT) [5] for parameter estimation. With BPTT
method, we need to unfold the neural network in consideration of sequence size
|Sm| and update the parameters once after the completed forward process in
sequence. We employ Adam [13], an efficient stochastic optimization algorithm,
with mini-batch techniques to iteratively update all parameters. We also apply
early stopping method to prevent overfitting in RNN-TD. The stopping crite-
rion is achieved when the performance has no more improvement in validation
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set. The mapping function of ¢(t) is defined by temporal features associated
with ¢, e.g., logarithm time interval log(¢; — ¢;—1) and discretization of numeri-
cal attributes on year, month, day, week, hour, mininute, and second. Besides,
we employ orthogonal initialization method for RNN-TD in order to speed up
convergence in training process. The embedding learned by word2vec [18,19] is
used to initialize the parameter of mapping function ¢(e). The good initialization
provided by the embedding can speed up convergence for RNN [17].

4 Experiments

Firstly, we introduce baselines, evaluation metrics and datasets of our experi-
ments. Then we conduct experiments on real data to validate the performance
of RNN-TD in comparison with baselines.

4.1 Baselines

Both mark prediction and time prediction are evaluated, and the following mod-
els are chosen for comparisons in the two prediction tasks.

(1) Mark sequence modeling.

— MC: The markov chain model is a classic sequence modeling method.
We compare with markov chain with order varying from one to three,
denoted as MC1, MC2 and MC3.

— RNN: RNN is a state-of-the-art model for discrete time sequence, suc-
cessfully applied in language model. To fairly justify the performance
between RNN and our proposed method, we use the same inputs in both
RNN and RNN-TD.

(2) Temporal dynamics modeling. We choose point processes and mark-specific
point processes with different characterizations as baselines.

— PP-poisson: The intensity function related to mark is parameterized by
a constant, depicting the leaving rate from last event.

— PP-hawkes: The intensity function related to mark e is parameterzied
by

Atse) = A0je) +a ) exp (—t_tl), (12)

g
t;<t

where o = 1 and A(0;e) is a intrinsic rate defined on mark e when ¢t = 0.

— MSPP-poisson: We define the mark-specific intensity function by a
parametric matrix, depicting the rate from one mark to another.

— MSPP-hawkes: The mark-specific intensity function is parameterized
by Eq. (12) where the constant rate is specialized according to mark pairs
in parametric matrix.

We also compare with the model that has the ability to generate both
mark and temporal sequences.

— RMTPP: Recurrent marked temporal point process (RMTPP) [7] is a
method which independently models both mark and time information
based on RNN.
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4.2 Evaluation Metrics

Serveral evaluation metrics are used when measuring the performance in mark
prediction and time prediction tasks. We regard the mark prediction task as a
ranking problem with respect to transition probability. The prediction perfor-
mance is evaluated by Accuracy on top k (Acc@k) and Mean Reciprocal Rank
(MRR) [24]. On time prediction task, we define tolerance 6 over the predic-
tion error between estimated time and practical occuring time. The prediction
accuracy on time prediction with respect to tolerance 6 is formulated as,

Acc@f = Z’]X:l Zﬁ?‘il S(|E(t; eiq1, hi) — tig1] < 0)
S (18wl = 1)

where § is an indicator function. Larger scores in Acc@k, MRR and Acc@f
indicate better predictions.

)

4.3 Datasets

We conduct experiments on two real datasets from two different scenarios to
evaluate the performance of different methods:

Table 1. Performance of mark prediction on two datasets

MRR |Acc@l |Acc@3 |Acc@5 |Acc@10| Acc@20

Memetracker | MC1 0.4634 |0.2948 |0.4595 0.6659 |0.8253 0.9209
MC2 0.4788 0.3155 |0.4706 |0.6773 |0.8301 |0.9186
MC3 0.4670 0.3149 0.4583 |0.6550 |0.7891 |0.8619
RNN 0.4780 0.3202 |0.4746 |0.6825 |0.8315 |0.9201
RMTPP 0.4833 10.3241 |0.4834 |0.6926 |0.8386 |0.9267

RNN-TD(c) 0.4820 0.3220 |0.4790 |0.6895 |0.8393 |0.9270
RNN-TD(exp) |0.4849 |0.3266 |0.4835 |0.6929 |0.8400 |0.9273
RNN-TD*(c) 0.4820 [0.3220 |0.4790 |0.6895 |0.8393 |0.9270
RNN-TD*(exp)|0.4851|0.3266|0.4844 |0.6937  0.8407 |0.9274

Dianping MC1 0.6174 |0.5231 |0.6157 |0.7212 |0.7963 |0.8787
MC2 0.6260 |0.5280 |0.6396 |0.7393 |0.8007 |0.8513
MC3 0.5208 0.4462 0.5395 |0.6035 |0.6332 |0.6569
RNN 0.6355 0.5123 |0.6135 |0.7153 |0.7905 |0.8656
RMTPP 0.6620 |0.5482 |0.6554 |0.7578 10.8271 |0.8935

RNN-TD(c) 0.6663 |0.5524 |0.6601 |0.7628 |0.8346 |0.8999
RNN-TD(exp) [0.6635 0.5448 0.6560 |0.7638 |0.8345 |0.8988
RNN-TD*(c) |0.6663|0.5524/0.6602 0.7628 |0.8346 |0.8999
RNN-TD*(exp)|0.6635 |0.5452 |0.6566 |0.7641 0.8351 0.8990
p-s. the experimental results from * are dependent with given time.
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— Memetracker [14]: Memetracker corpus contains articles from mainstream
media and blogs from August 1 to October 31, 2008 with about 1 million doc-
uments per day. Contents in the corpus are organized according to topics by
the proposed method in [14]. We use top 165 frequent topics and organize the
posting sequence about posted blogs and post-time by users. The whole post-
ing sequence of each user is splited into parts as follows, (1) get the statistics
of time intervals between two consecutive posted blogs, (2) empirically esti-
mate the period of user’s posting behavior, (3) and divide the whole sequence
into several parts according to the estimated period. We do not consider
the sequences whose length are less than 3. The obtained dataset contains
1,481,491 posting sequences, and the time interval between two consecutive
blogs is ranged from 2.77 x 10~ to 99.68 h.

— Dianping: Dianping provides an online restaurant rating service in China,
including coupon sales, bill payment, and reservation. We extract transaction
coupon sales from top 256 popular stores located in Xidan bussiness district
of Beijing from year 2011 to 2015. The consumption sequences of users are
divided into segments as the same steps done in memetracker. Because of
the existence of sparse shopping records in users, we also limit that time
interval between two consecutive consumptions is two months. The processed
dataset contains 221,893 event sequences, and the time interval between two
consecutive consumptions is ranged from 2.77 x 10~% to 1440 h.

On both datasets, we randomly pick up 80% of completed sequences in
datasets as training, and the rest sequences are divided into two parts equally
as validation set and test set respectively.

4.4 Performance of Mark Prediction

The performance of mark prediction is evaluated using metrics Acc@k and MRR.
The experimental results are shown in Table 1. Comparing with MC1, MC2, MC3
and RNN, RNN-TD(c) and RNN-TD(exp) achieve significant improvements
over all metrics in both datasets. In Memetracker, RNN-TD(exp) outperforms
RMTPP in MRR at significance level of 0.1, and achieve a little improvements
than RMTPP in Acc@1,3,5,10 and 20. However, the performance of RNN-TD(c)
is worse than RMTPP. In Dianping, RNN-TD(c) achieves improvements than
RMTPP in metrics of MRR and Acc@5 at significance level of 0.1 and met-
rics of Acc@10 and Acc@20 at significance level of 0.01. Besides, RNN-TD(exp)
achieves improvements than RMTPP in metrics of Acc@20 at significance level
of 0.1 and metrics of Acc@5 and Acc@10 at significance level of 0.01. The exper-
imental results indicate that RNN-TD can better learn the mark generation by
jointly optimizing mark-specific conditional intensity function with respect to
different time shaping function applied in tasks.

We also conduct experiments according to event likelihood on RNN-TD with
the given time, marked as RNN-TD*. The results of RNN-TD*(exp) performs
little better than RNN-TD(exp) over all metrics in both datasets, However, the
performance of RNN-TD*(c) is almost the same as RNN-TD(c). It demonstrates
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Fig. 2. Performance of timing prediction on two datasets.

the robustness of RNN-TD on mark prediction whether or not given the occuring
time. Besides, RNN-TD with exponential form of time shaping function has
larger effects on given time than the constant form.

4.5 Performance of Time Prediction

We evaluate the performance of time prediction by Acc@@. The predictions of
RNN-TD and MSPP are based on true marks. Fig. 2(a) and (b) show the exper-
imental results of RNN-TD and baselines on memetracker and dianping. As
shown in Fig. 2, without considering any mark information, PP-poisson and PP-
hawkes are unable to handle the temporal dynamics well on both Memetracker
and Dianping. MPP can discriminate mark-specific time-cost, leading to better
performance than PPs. In memetracker dataset, although RMTPP has better
performance than PP, it does not overbeat MSPP-poisson and MSPP-hawkes.
In dianping dataset, RMTPP(c) and RMTPP(exp) achieve better performance
than MSPP-hawkes when tolerance 6 < 65h, and also achieve better perfor-
mance than MPP-poisson when tolerance 6 < 15h. It is seen that RNN-TD(c)
and RNN-TD(exp) achieve the best performance than all the baselines in the
most cases on two datasets. The improvements achieved by RNN-TD indicate
that our proposed method can well model marked temporal dynamics by learn-
ing mark-specific intensity functions, while RMTPP share the same intensity
function for all the marks. Note that the variance of time distribution is quite
larger in Dianping than Memetracker. Thus we need to give a smaller « in Dian-
ping when training PP-hawkes and MSPP-hawkes model, leading to the similar
performance than PP-poisson and MSPP-poisson shown in Fig. 2(b).

4.6 Case Study on Event Prediction

To explore the capability of event prediction of RNN-TD, we randomly choose
one specific event sequence from memetracker and dianping respectively, and
estimate the next events in the sequence. In RNN-TD, we select top 3 events in
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Table 2. Case study on event prediction

(a) One specific event sequence prediction on memetraker

i-th event: mark,time (mins)|1th 2nd 3rd
RMTPP c#1l Europe debt, 22.32 Europe debt, 12.29 Europe debt, 60.31
cH#2 LinkedIn IPO, 22.32 Dominique Strauss, 12.29/ Amy Winehouse, 60.31
c#3 Amy Winehouse, 22.32 |LinkedIn IPO, 12.29 Dominique Strauss, 60.31
RNN-TD c#1 Europe debt, 1.07 Dominique Strauss, 1.34 |Dominique Strauss, 3.63
Cc#2 Dominique Strauss, 0.45|Europe debt, 1.29 Europe debt, 3.12
c#3 LinkedIn IPO, 0.44 LinkedIn IPO, 0.56 attack, 2.93
Ground truth Dominique Strauss, 6.37|attack, 83.78 attack, 18.18
(b) One specific event sequence prediction on dianping
i-th event: mark,time (days)|1th 2nd 3rd
RMTPP c#1 bibimbap, 2.34 bibimbap, 2.90 Sichuan cuisine, 3.02
cH#2 tea restaurnt, 2.34 cookies, 2.90 cookies, 3.02
c#3 Yunnan cuisine, 2.34 Sushi, 2.90 tea restaurnt, 3.02
RNN-TD c#1l bibimbap, 2.93 barbecue, 0.65 barbecue, 0.96
c#2 Yunnan cuisine, 0.88 bibimbap, 0.85 Sichuan cuisine, 0.81
c#3 bread, 0.92 Vietnamese cuisine, 0.51 |bread, 0.48
Ground truth barbecue,0.14 Sichuan cuisine,1.03 barbecue,1.06

descending order of event likelihood as candidates of next event, called c#1, c#2
and c#3. In RMTPP, we choose the most probable mark and expectation time
independently and combine them as the candidates of next event. Table 2 lists
the performance of RMTPP and RNN-TD. We can see that the predicted marks
on RNN-TD are more accurate and relevant to ground truth than compared
methods on both cases. Then, we categorize most relevant marks by empirical
knowledge to evaluate the estimated time on mark-specific methods when marks
are mismatched in all 3 candidates. For example, we consider bibimbap and
barbecue belong to same regional cuisine, and Dominique Strauss is related
to Europe debt. In this way, the average error of time prediction to ground
truth for RNN-TD is 34.55min, and the average error is up to 43.19 min for
RMTPP in the case of Memetrack. In the case of Dianping, the average error
of time prediction to ground truth for RNN-TD is 1.13 days, and the average
error is nearly doubled to 2.04 days for RMTPP. Indeed, RNN-TD can provide
more options according to possible event predictions which has more general
applications, e.g., recommendation systems.

5 Conclusions

In this paper, we proposed a general model for marked temporal dynamics mod-
eling. Based on RNN framework, the representation of hidden layer in RNN-TD
learns the history embedding through a deep structure. The generation of marks
and times is dependent on history embedding so that we can avoid strong prior
knowledge on dependency of history. We observe that the generation processes
of next event are significant different with respect to marks. To capture the
dependence between marks and times, we unfolded the joint probability of mark
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and time and parameterized the mark transition probability and mark-specific
conditional intensity function based on history embedding. We evaluate the effec-
tiveness of our proposed model on two real-world datasets from memetracker and
dianping. Experimental results demonstrate that our model consistently outper-
forms existing methods at mark prediction and time prediction tasks. Moreover,
we conduct case study on event prediction demonstrating that our proposed
model is well applicable in marked temporal dynamics modeling.
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