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Abstract. Given time-series data such as electrocardiogram (ECG)
readings, or motion capture data, how can we succintly summarize the
data in a way that robustly identifies patterns that appear repeatedly?
How can we then use such a summary to identify anomalies such as
abnormal heartbeats, and also forecast future values of the time series?
Our main idea is a vocabulary-based approach, which automatically
learns a set of common patterns, or ‘beat patterns,” which are used
as building blocks to describe the time series in an intuitive and inter-
pretable way. Our summarization algorithm, BEATLEX (BEAT LEXicons
for Summarization) is: (1) fast and online, requiring linear time in the
data size and bounded memory; (2) effective, outperforming competing
algorithms in labelling accuracy by 5.8 times, and forecasting accuracy
by 1.8 times; (3) principled and parameter-free, as it is based on the
Minimum Description Length principle of summarizing the data by com-
pressing it using as few bits as possible, and automatically tunes all its
parameters; (4) general: it applies to any domain of time series data, and
can make use of multidimensional (i.e. coevolving) time series.

1 Introduction

Consider a medical team who wishes to monitor patients in a large hospital. How
can we design an algorithm that monitors multiple time series (blood pressure,
ECG, etc.) for a patient, automatically learns and summarizes common patterns,
and alerts a doctor when the patient’s overall state deviates from the norm?

Time series data has attracted huge interest in countless domains, including
medicine [7], social media [12], and sensor data [1]. But as the scale and com-
plexity of time series data has exploded, the human capacity to process data
has not changed. This has led to a growing need for scalable algorithms which
automatically summarize high-level patterns in data, or alert a user’s attention
toward anomalies.
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Figure1l (top) shows an example of an ECG sequence. This ECG sequence
contains two distinct types of patterns: indeed, it was manually labelled by car-
diologists as shown in Fig. 1 (bottom), who marked a segmentation at the start
of each heartbeat (shown by the grey vertical lines), and labeled the heartbeats
as ‘normal beats’ and ‘premature ventricular contractions,” a type of abnormal
heartbeat. A natural way to summarize this sequence, then, would be to exploit
patterns that occur multiple times: namely, the two types of heartbeat patterns.
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Fig. 1. Accurate segmentation, labelling, and forecasting: BEATLEX learns a vocabu-
lary, segments the data (grey dotted vertical lines), labels heartbeat types based on the
closest vocabulary term, and forecasts future data to the right of the black dotted line.
Its output matches the ground truth almost exactly, and the vocabulary terms cor-
respond closely to medically relevant patterns: ‘normal sinus rhythm’ and ‘premature
ventricular contraction.” (Color figure online)

Thus, our goal is to summarize a time series using patterns that occur
multiple times. Here patterns refers to any subsequences which are broadly
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similar to one another. This includes periodic time series, but applies much more

generally to allow patterns whose shape or length gets distorted, or changes over

time, or even multiple patterns interspersed with one another as in Fig. 1.
Hence, the problem that we focus on is:

Informal Problem 1. Given a time series X with patterns, find:

- Summarization: a model that succintly represents the common patterns in
X.

— Anomalies: time periods in X during which anomalous events occurred (e.g.
abnormal heartbeats).

— Forecast: forecast future time ticks of X.

To robustly handle real-world data such as in Fig. 1, there are several key
challenges: (1) patterns can be highly complex and nonlinear, so simple para-
metric models do not work. (2) Patterns are often distorted in length and shape,
so methods that assume that a pattern straightforwardly repeats itself do not
work. (3) The correct segmentation of the data is unknown: domain-specific seg-
mentation tools for ECG sequences are not enough as we want be able to handle
any type of time series (e.g. motion-capture data in Fig. 2).

To solve this problem, our algorithm adopts a vocabulary-based approach,
as illustrated in Fig. 1 (middle). It automatically and robustly learns a vocabu-
lary containing the common patterns in the data. At the same time, it finds cut
points to break up the data into segments, and describes each segment based on
its closest vocabulary term, labelling each segment accordingly. Note in Fig. 1
that both its segmentation and labelling are essentially identical to the ground
truth annotation by cardiologists.

This vocabulary-based approach is intuitive and interpretable, since it
describes the data exactly as a human would, in terms of its patterns and where
they are located. In the ECG case, the learned vocabulary terms are also med-
ically relevant, as shown in Fig. 1 (right): the blue and red beats correspond to
known heartbeat patterns.

Figure 1 also shows that BEATLEX also allows accurate forecasting: the part
of the ECG sequence to the right of the black dotted line was forecasted by
the algorithm, which also matches the ground truth. Note that the algorithm
learns from past data that 3 normal (blue) beats tend to be followed by an
abnormal (red) beat, then cycling back to normal beats, a known condition
called ‘quadrigeminy.’

Our method is:

— Fast and online: BEATLEX takes linear time in the length of the time
series. Moreover, it requires bounded memory and constant update time per
new data point, making it usable even with limited processing power, such as
wearable computers or distributed sensor networks.

— Effective: BEATLEX outperforms existing algorithms in labelling accuracy
by 5.3 times, and forecasting accuracy by 1.8 times.



6 B. Hooi et al.

Dribbling

Shooting

Learned

vocabulary

Two-handed

> <€

lDribeing dribbling

5

10

Learned labelling

I
15

Time (s)

Vi

[ [1]

il

|

|

< <

w

|
2 |
i

;
A

Fig. 2. Generality: BEATLEX accurately segments and labels action types in motion
capture data of a basketball player. The 4 coloured lines correspond to the subject’s
left and right arms and legs. (Color figure online)

— Principled and parameter-free: BEATLEX is fit using the Minimum
Description Length principle of compressing the data into as few bits as pos-
sible, and automatically tunes all its parameters.

— General: BEATLEX applies to any type of time series data, and can make
use of multidimensional time series, e.g. motion capture data in Fig. 2.

2 Background and Related Work

Time Series Summarization. Methods for summarizing a time series can be
divided into model-based and non-model-based methods. Model-based methods
estimate a statistical model, and include classic methods such as autoregression
(AR), ARIMA [3], and Hidden Markov Models (HMMs) [2]. More recent variants
include DynaMMo [11], AutoPlait [14], and RegimeCast [13]. Non model-based
methods summarize the data using approximations or feature representations,
including SAX [21]. TBATS [5] is a forecasting approach allowing for complex
seasonality. SAX [21] discretizes a time series into symbols, and has been used
as a preprocessing step before time series clustering [9,17] and anomaly detec-
tion [8].

Distance-Based Methods. These methods extract subsequences using sliding win-
dows, and measure distances between the subsequences, using either Euclidean
distance or Dynamic Time Warping [6] (DTW). DTW is a distance-like measure
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that allows elastic shifting of the time axis, which has shown good empirical
performance for time series classification [26]. Discord Detection methods [8,27]
apply Euclidean distances or DTW between subsequences for anomaly detection,
while subsequence clustering methods [9,17] find clusters of similar subsequences.

Table 1 summarizes existing work related to our problem. BEATLEX differs
from existing methods as follows: (1) BEATLEX allows for patterns that change
over time; (2) BEATLEX is an online algorithm; (3) BEATLEX uses a novel
vocabulary-based approach; importantly, this difference allows it to robustly
capture arbitrarily complex patterns to summarize the data.

Table 1. Comparison of related approaches. ‘AR++’ refers to AR and its extensions
(ARIMA, etc.). ‘Changing Patterns’ refer to modelling sequences with patterns that
change over time. ‘Non-linear’ refers to sequences with non-linear dynamics.

AR++ [3] HMM++ Discord |Clustering AutoPlait |RegimeCast BEATLEX
2,11,25] |[8,27] |[9,17]  |[14] [13]

Segmentation v v v
Anomaly v v v
detection

Forecasting v v v v
Pattern v v v v
discovery

Non-linear v v v v
Changing v
patterns

Online 4

3 Problem Definition

Preliminaries. Table?2 includes the main definitions and symbols used in this
paper.

We first introduce the Minimum Description Length (MDL) principle, which
will allow us to define what a good summarization is. The MDL principle states
that the best representation for some data is the one that leads to the best
compression of the data. Formally, given data X, the MDL principle states that
we should find the model M to minimize the description length of X, which is
defined as Cost(M) + Cost(X|M ), where Cost(M) is the number of bits needed
to encode the model M, and Cost(X|M) is the number of bits needed to encode
the data given model M. The full expression for these costs depends on the type
of model used, and will be given later, in Eq. (1).

Based on this cost function, we can formally define our summarization
problem:
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Problem 1 (Summarization). Given (X;)",, a real-valued time series of length
m, find a model M to minimize the description length, Cost(M) + Cost(X|M).

We next define our model M, and explain how it is used to compress the
data.

Table 2. Symbols and definitions

Symbol Interpretation

X Real-valued input time series
Xab Subsequence of X from index a to b (inclusive)
m Length of time series X
Vi ith vocabulary term
n; Length of V;
Number of vocabulary terms
n Number of segments
a; Start of ith segment
b; End of ith segment
X? ith segment, i.e. Xg;.p;
2(1) Assignment variable for ith segment
N; Number of segments assigned to vocabulary term 4
c() Description cost, i.e. no. of bits needed to describe a parameter
Cr Number of bits for encoding a floating point number

MDTW | Modified DTW distance (see Definition 1)

Smin, Smaz | Minimum and maximum width of a segment

kmaz Maximum vocabulary size
w Width of Sakoe-Chiba band for DTW [20]
4 Model

Figure 3 illustrates our vocabulary-based model for a time series X. It consists
of:

— Vocabulary: the ‘vocabulary terms’ V7, ...,V are short time series patterns
which will be used to explain segments of the actual data. For example,
one pattern may represent normal heartbeats, while another may represent
abnormal heartbeats.

— Segmentation: this describes how X is split into continuous segments of
time. We represent the segments using intervals [aq,b1],...,[an, by], Where
a1 =1,bp, =m,and b; + 1 =a;4; fori=1,...,n—1.

— Assignment variables: these describe which vocabulary term is used to
encode each segment. For each 4, the assignment variable z(7) means that the
z(i)th vocabulary term (i.e. V(;)) is used to encode segment i.
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Fig. 3. Illustration of our summarization model. The data is broken into segments, and
the assignment describes how each segment is described using the vocabulary.

5 Optimization Objective

In this section we explain our optimization objective, which is based on mini-
mizing the description length of the model, and the data given the model.

5.1 Model Cost

From our model definition in Sect. 4, the parameters in the model are the vocab-
ulary size k, the vocabulary sequences Vi,..., Vs, the segmentation intervals
[a1,b1], ..., [an, by], and the assignment variables z(1), ..., z(n). Let C(-) denote
the number of bits required to store a parameter. As preliminaries: first, encod-
ing an arbitrary integer requires log* k bits.! Second, encoding a discrete variable
taking N possible values requires log, IV bits. In the rest of this paper, all loga-
rithms will be base-2.
The model cost consists of:

— Vocabulary size: storing the positive integer k requires log™ k bits.

— Vocabulary: storing V; requires n; x Cr bits, where C is the number of
bits needed to encode a floating point number.?

— Segmentation: for the segmentation [a1,b1],...,[an,by,], it is sufficient to
store by,...,b,_1, since these completely determine the segmentation. Each
b; takes m possible values. Hence, the total number of bits required is (n —
1) log(m).

— Assignment variables: there are n such variables, each taking k possible
values. Hence, the number of bits required is nlog(k).

In total, the number of bits needed to store the model is:

Cost(M) = log™( +C’F2nl (n —1)log(m)+ nlog(k)
—f—’ ——

cost ot k %,_/ segmentation cost  assign. cost

vocab. cost

! Here, log* is the universal code length for positive integers [19].
2 We use Cp = 8, following [15].
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5.2 Data Cost

How do we encode X given this model? Consider each segment X?, and its
corresponding vocabulary term V' = V,;). We want to encode X i such that its
encoding cost is low if it is similar to V', where this similarity should allow for
slight distortions in shape. To achieve this, we encode X* based on a modification
of Dynamic Time Warping (DTW). Recall that given two sequences A and B,
DTW aligns them while allowing for expansions on either sequence (e.g. if an
entry of A is matched to two entries of B, we say that entry of A was ‘expanded’
once).

We modify DTW by adding penalties for each expansion. Similar penalized
variants of DTW exist [23]; however, since we use an MDL framework, our choice
of penalties has a natural interpretation as the number of bits needed to describe
X' in terms of V.

Definition 1 (Modified DTW). Given two sequences A and B,
MDTW(A, B) modifies reqular DTW by adding a penalty of logna for each
expansion to A and logng for each expansion to B, where na and ng are the
lengths of A and B.

The number of bits needed to describe X in terms of V is given by the MDTW
cost: i.e. C(X!|V) = MDTW (X% V). To see this, note that the penalty, logn 4
for expansions to A, exactly describes the number of bits needed to encode an
expansion to A, since each expansion is of one of n possible entries. Thus the
penalties capture the number of bits needed to encode expansions. In addition,
we need to encode the remaining errors after warping; assuming these errors are
independently Gaussian distributed, based on Huffman coding, their encoding
cost in bits is their negative log likelihood under the Gaussian model [4], which
is the standard squared-error DTW cost.

5.3 Final Cost Function

Combining our discussion so far, the description length cost under model M is:

f(M) = Cost(M) + Cost(X|M)
k n
=log"(k)+Cr ¥ _ni+ (n—1)log(m) + nlog(k) + > MDTW(X', V,(;)))

i=1 . . i=1
cost of k q,_/ segmentation cost  assign. cost G

vocab. cost data cost

(1)

6 BEATLEX Summarization Algorithm

6.1 Overview

In this section, we describe our algorithm for learning vocabulary terms, a seg-
mentation, and an assignment, to minimize description length. From a high level,
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we first generate the initial vocabulary term (New Vocabulary Term Generation).
Then, starting at the beginning of the time series, our algorithm repeatedly finds
the closest match between any existing vocabulary term and a prefix of the time
series (Best Vocabulary-Prefiz Match). If a sufficiently good match is found, it
assigns this segment to this vocabulary term (Vocabulary Merge). Otherwise, it
creates a new vocabulary term (New Vocabulary Term Generation).

Algorithm 1. BEATLEX summarization algorithm

Input : Time series X

Output: Vocabulary Vi, ..., Vi, assignments z, segmentation S.

1 k=0;

2 ¢ =1; // current position

3 while ¢ <m do

4 >Find best vocabulary-prefix match:

5 j*,s" = arg min M, >see Section 6.2

J»s

6 >If using existing vocab. has lower cost than creating new vocab. term:

7 if C(Xi+1:i+s* |ij*) < CfF 8" or k = kmas then

8 >Use existing vocabulary term:

9 Vj» = VOCABMERGE(Xiy1:i4s%, Vj*)); >see Section 6.3
10 | Append j” to z;
11 else
12 >Create new vocabulary term:
13 s* = NEWVOCABLENGTH(X, 7, (V1,...,V&)); >>see Section 6.4
14 Vit1 = Xit1iits*;
15 Append k + 1 to z;
16 L k=k+1;
17 Append [i +1:¢+ s*] to S;
18 | i=i+ s

6.2 Best Vocabulary-Prefix Match

Assume that the algorithm has processed the time series up to time 4 so far, and
the current vocabulary it has learned is V1, ..., Vi. The next key subroutine the
algorithm uses is to find the best match between any vocabulary term and any
prefix of the current time series, i.e. X;11.54s, for some s with s;pin < 8 < Simaa,
where Sy, and Sp,q, are lower and upper bounds of the allowed segment length.
We choose the best vocabulary term index j* and the best prefix length s* by
minimizing average encoding cost:

C(Xij1:i44|V; . MDTW (Xii1:i4s, V;
J*.s* = argmin (Xigriys|V5) _ argmin (Xitriits, V)
7,8 S 7,8 S

(2)

Dividing by s allows us to compare fairly between different prefix lengths, by
finding the prefix that can be encoded most efficiently per unit length.
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How do we efficiently perform the minimization in (2)? Consider a single
vocabulary term; we have to compare it against Syqe — Smin + 1 choices of
prefixes, and running a separate MDTW computation for each would be very
slow. It turns out that we can minimize across all these subsequences optimally
in a single MDTW computation. Across k vocabulary terms, this gives a total
of kK MDTW computations:

Theorem 1. The best j*,s* minimizing (2) can be found in k MDTW compu-
tations, and requires O(k - w - Spaqz) time.

Proof. For each j, consider computing the MDTW on V; and X;41.i4s,,..- Each
entry of the DTW matrix computed by the dynamic programming DTW algo-
rithm encodes the minimum DTW cost between each prefix of V; and each prefix
of X;41:i+s,,.,- Hence, the last Spaz — Smin + 1 entries of the last row of the
DTW matrix contains the minimum MDTW distance between V; and each of the
prefixes X;11.445 for Spmin < 8 < Spmaz- Our algorithm can extract these values,
divide them by their prefix lengths s, and choose the one minimizing average
encoding cost. This requires &k MDTW computations, one for each vocabulary
term; each MDTW computation requires O(w - $;qz) time, using a Sakoe-Chiba
band of width w [20]. |

6.3 Vocabulary Merge (VOCABMERGE)

Now assume we have computed the best vocabulary-prefix match. If the resulting
average encoding cost is less than Cp, then since generating a new vocabulary
term would require Cg bits per unit length, the most efficient choice is to encode
Xit1:4s using the existing vocabulary Vj-, so our algorithm makes this choice
(Line 7). Otherwise, it creates a new vocabulary term (see Sect.6.4).

After encoding X;i1.i4+ using V-, we would like to update V- to make
it an ‘average’ of the subsequences it encodes, to allow our algorithm to keep
track of patterns that change over time. We use a running average approach,
in which we keep track of how many subsequences have been assigned to Vj-
so far (call this number N;-). Intuitively, we should replace V- by a weighted
average of X;,1.i4s and itself, with weight of ﬁ given to X;;1.i44+, and

11\/;\7] — given to the current value of Vj; this makes sense since the current value
of Vj« is an average of the N;- subsequences currently assigned to it. However,
rather than using a straightforward average, we first run the MDTW algorithm
in order to align X;11.i44 to Vj~ before averaging it with Vj-. Straightforward
averaging would adversely affect the sequence shape, e.g. if both sequences have
sharp peaks in slightly different locations, the average would have two peaks.

Aligning the sequences first avoids this problem.

6.4 New Vocabulary Term Generation (NEWVOCABLENGTH)

In this case our algorithm chooses to generate a new vocabulary term Vj41. To
select the ideal length ny1, we iterate over all possible ny41. For each, we then
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use Best Vocabulary-Prefiz Match to compute the average encoding cost of the
next prefix after X, 1.i4n,,,, matched to any of the vocabulary terms (including
Vi+1). The final length ngiq chosen is the one that results in the lowest such
average encoding cost.

6.5 Computation Time and Memory

BEATLEX is linear in the length m of the time series:

2

Lemma 1. BEATLEX runs in O(m -k - w - Smax/Smin + k> - w - 82,

) time.

Proof. As shown in Theorem 1, each vocabulary-prefix match step takes O(k -
W * Smae) time. We perform this step up to once per segment (not including
vocabulary term generation), so at most once every S, steps, taking O(m -k -
W+ Smaz/Smin) 10 total. The vocabulary term generation step runs k times, each
trying at most s,,q, candidates taking O(k - w - S;mq2) €ach time, for a total of

Ok? - w-s2,..). [ |
Note that typically m greatly exceeds the other variables, the O(k*-w-s2,,,) term

is typically negligible. Figure 5c¢ verifies the linear scalability of our algorithm in
practice.

Lemma 2. BEATLEX does not require the past history of the time series, and
hence requires only bounded memory.

Proof. We verify from Algorithm 1 that BEATLEX never needs to access the past
history of the time series, and operates on incoming time series values while only
keeping track of its vocabulary, storing at most its k4, vocabulary terms at
any time, which requires bounded memory. |

6.6 Extensions

Multidimensional Time Series: Figure6 shows our algorithm applied on a 2-
lead (i.e. 2-dimensional) ECG. To handle multidimensional time series, only a
small change is needed: now, our vocabulary terms are likewise multidimensional.
When encoding a subsequence using a vocabulary term, we use the dth dimen-
sion of the vocabulary term to encode the dth dimension of the subsequence.
The description length of encoding a subsequence is then the sum of descrip-
tion lengths of encoding each individual dimension separately. The rest of our
BEATLEX algorithm applies without change.

Anomaly Detection: Figure 1 reports the vocabulary terms with their frequen-
cies in the data; PVCs are the rarer pattern. The most straightforward kind
of anomaly are patterns that occur exactly once; we can easily detect these by
selecting vocabulary terms that are only used to encode a single segment. More
generally, we may also wish to detect rare patterns such as the PVCs in Fig. 1.
We can easily detect this kind of anomaly (as well as the former type) by ranking
the vocabulary terms by how many segments they encode, and returning those
encode the fewest.
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Forecasting: How do we forecast future values of the time series, as done in
Fig. 17 Based on our learned segment labels, we learn Markov Models of orders
0,1,...,7maz using the usual maximum likelihood approach [2]. Here the Oth
order model simply ignores the past and forecasts the most frequent label. To
forecast the next segment label, we first try to use the highest (r,q,) order
model, but repeatedly drop to the next lower order if the sequence of the last r
labels (where r is the current order) has not been seen in the past. This process
continues to forecast as many segment labels as we need. Our forecasts for the
actual data are the associated vocabulary terms.

Automatic Parameter Setting: Our MDL objective (5) provides an easy way
to choose parameters automatically, via grid search minimizing the description
length cost. To keep the algorithm fast, we only do this once per type of data
(e.g. on a single ECG sequence), then fix those values.

7 Experiments

We design experiments to answer the following questions:

— Q1. Labelling Accuracy: how accurate are the labels returned by BEAT-
LEX?

— Q2. Forecasting Accuracy: how accurately does it forecast future data?

— Q3. Scalability: how does the algorithm scale with the data size?

— Q4. Interpretability: are the results of the algorithm interpretable by the
user?

Our code, links to datasets, and experiments are publicly available at www.
andrew.cmu.edu/user/bhooi/beatlex. Experiments were done on a 2.4 GHz Intel
Core i5 Macbook Pro, 16 GB RAM running OS X 10.11.2.

7.1 Data

We evaluate our algorithm on ECG sequences from the MIT-DB Arrythmia
Database® (MITDB) [16], as well as motion capture data from the CMU motion
capture database?.

MITDB Dataset. The MITDB dataset contains 48 half-hour ECG recordings
from test subjects from Beth Israel Hospital. Each recording consists of two ECG
sequences, or ‘leads,” at 360 time ticks per second, for a total of 650,000 ticks.
Ground-truth annotations by two or more independent cardiologists indicate the
position and type of each heartbeat; disagreements were resolved to obtain the
annotations.

3 https://physionet.org/cgi-bin/atm/ATM?database=mitdb.
4 http://mocap.cs.cmu.edu/.
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CMU Motion Capture Dataset. The dataset consists of motion-captured subjects
performing various actions. Each recording is a 64 dimensional vector (represent-
ing the subject’s body parts), of which we chose 4 dimensions (left-right arms
and legs). The recording lasts 50s with 120 ticks per second, for a total of 6000
time ticks.

7.2 Q1I1: Labelling Accuracy

Recall that BEATLEX labels each time tick based on which vocabulary term it
was assigned to. We evaluate this by comparing it to the ground truth labelling
using standard clustering metrics: Adjusted Rand Index [18] and Normalized
Mutual Information [22]. Due to the fairly large number of ECG sequences and
trials, we subset time series to 5000 time ticks, and do the same for our forecasting
tests in the next subsection.

Baselines. The baselines are Hidden Markov Models (HMMs) [10] and Auto-
plait [14], which identifies ‘regimes’ in time series data using a hierarchical HMM-
based model.

Figure 4 shows the labelling accuracy of BEATLEX, HMMs and Autoplait,
averaged across all 48 ECGs. Under both metrics, BEATLEX clearly outperforms
both baselines. The key difference is that HMM-based methods (including Auto-
plait) have difficulty accurately representing the complex and nonlinear ECG
patterns based on a model only using state transitions. In contrast, BEATLEX
treats entire vocabulary terms as ‘building blocks,” and hence has no particular
difficulty handling complex patterns.

Labelling accuracy (ARI)
o "o o o o o
N e h o > S
(4]
©
x
Labelling accuracy (NMI)
s o
o ~
(3]
w
x

o

BEATLEX HMM AUTOPLAIT BEATLEX HMM AUTOPLAIT

(a) Labelling accuracy (ARI)  (b) Labelling accuracy (NMI)

Fig. 4. Labelling accuracy (higher is better): BEATLEX outperforms baselines, accord-
ing to the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI)
metrics, averaged across ECG sequences. Error bars indicate one standard deviation.

7.3 Q2: Forecasting Accuracy

We now evaluate BEATLEX in terms of forecasting future data. For each ECG
sequence, the last 1000 time ticks (approximately 3s) are hidden from the algo-
rithm, and the algorithm forecasts this data. We compare the forecasts to the
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true values using Root Mean Squared Error (RMSE), as well as Dynamic Time
Warping (DTW) distance.

Baselines. As baselines, we use the classical ARIMA [3] algorithm, as well as
the more recent TBATS [5] forecasting algorithm. We select the ARIMA order
using AIC.

Figure 5 shows the forecasting error of BEATLEX compared to the baselines
(lower is better). BEATLEX outperforms the baselines according to both metrics,
but particularly under DTW distance. This difference between metrics is not
surprising: RMSE is extremely sensitive to small temporal variations, e.g. of the
spikes present in ECG data.

0 4x10°
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Fig.5. Forecast error (lower is better): BEATLEX outperforms competing baselines
in forecast accuracy averaged across all ECG time series, according to the standard
RMSE and Dynamic Time Warping (DTW) distance metrics. Scalability: BEATLEX
scales linearly, shown by growth parallel to the dotted diagonal on a log-log plot.

7.4 Q3: Scalability

Figure 5¢ verifies the linear scalability of BEATLEX. We vary the length of a
subset of an ECG sequence, and plot running time against length. The plot is
around parallel to the main diagonal on a log-log plot, indicating linear growth.
BEATLEX scales to large datasets, running on data of length 512,000 in less than
200s.

7.5 Q4: Discoveries and Interpratability

In this section, we show that BEATLEX automatically discovers interpretable,
medically relevant patterns. In Fig. 1, the learned vocabulary terms can be eas-
ily and accurately matched with medically recognized patterns, ‘normal sinus
rhythm’ and ‘premature ventricular contraction’ (PVC) respectively. Going
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beyond individual heartbeats, our algorithm also successfully learns a pattern
present in Fig. 1 known as ‘quadrigeminy’ in which PVC beats show up approx-
imately every 4 beats. Medically, these patterns occur because the heart re-
polarizes after a PVC, during which normal beats occur [24].

Multidimensionality: Section6.6 explains that our algorithm handles multidi-
mensional time series by learning multidimensional vocabulary terms. Figure 6
illustrates this. The two vocabulary terms still accurately correspond to normal
sinus rthythm and PVCs respectively, except that each now has a multidimen-
sional vocabulary term.

Learned

Forecast vocabulary
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Fig. 6. Accurate multidimensional summarization and forecasting: an ECG sequence,
with its two dimensions in red and blue. BEATLEX accurately segments the data, learns
the two types of heartbeats, and forecasts future data. (Color figure online)

Motion Capture Dataset: Our algorithm is generalizable to other time series
datasets. Figure 2 shows its results on motion capture data of a basketball player.
Despite significant variation in the width and shape of a pattern, our algorithm
still successfully learns, segments and labels vocabulary terms corresponding to
dribbling, shooting and two-handed dribbling.

8 Conclusion

We presented the BEATLEX algorithm, a novel vocabulary-based approach
designed to handle time series with patterns. It robustly learns interpretable
vocabulary terms, in the face of possibly nonlinear patterns, distortions, and an
unknown segmentation. BEATLEX is:

— Fast and online: BEATLEX takes linear time, bounded memory and constant
update time per data point.
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— Effective: BEATLEX outperforms existing algorithms in labelling accuracy
by 5.3 times, and forecasting accuracy by 1.8 times.

— Principled and parameter-free: BEATLEX is fit using the Minimum
Description Length (MDL) principle, and automatically tunes its parame-
ters.

— General: BEATLEX applies to any domain of time series data, and multidi-
mensional time series.

Reproducibility: Our code, links to datasets, and experiments are publicly
available at www.andrew.cmu.edu/user/bhooi/beatlex.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grants No. CNS-1314632, 11S-1408924, and by the Army
Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053, by
the Image Analysis and Machine Learning Platform - ERI/TIC/0028/14 grant, and
by Beijing NSF No. 4172059. Shenghua Liu is also supported by the scholarship from
China Scholarship Council. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation, or other funding parties. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

References

1. Basu, S., Meckesheimer, M.: Automatic outlier detection for time series: an appli-
cation to sensor data. Knowl. Inf. Syst. 11(2), 137154 (2007)

2. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite
state Markov chains. Ann. Math. Stat. 37(6), 1554-1563 (1966)

3. Box, G.E., Jenkins, G.M.: Time Series Analysis: Forecasting and Control, revised
edn. Holden-Day Inc., San Francisco (1976)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken
(2012)

5. De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with com-
plex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496),
1513-1527 (2011)

6. Keogh, E.: Exact indexing of dynamic time warping. In: Proceedings of the 28th
International Conference on Very Large Data Bases, pp. 406-417. VLDB Endow-
ment (2002)

7. Keogh, E.; Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting
time series. In: Proceedings IEEE International Conference on Data Mining, ICDM
2001, pp. 289-296. IEEE (2001)

8. Keogh, E., Lin, J., Fu, A.: Hot sax: efficiently finding the most unusual time series
subsequence. In: Fifth IEEE International Conference on Data Mining, pp. 8—pp.
IEEE (2005)

9. Keogh, E., Lin, J., Truppel, W.: Clustering of time series subsequences is meaning-
less: implications for previous and future research. In: Third IEEE International
Conference on Data Mining, ICDM 2003, pp. 115-122. IEEE (2003)


www.andrew.cmu.edu/user/bhooi/beatlex

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

BEATLEX: Summarizing and Forecasting Time Series with Patterns 19

Letchner, J., Re, C., Balazinska, M., Philipose, M.: Access methods for markovian
streams. In: IEEE 25th International Conference on Data Engineering, ICDE 2009,
pp. 246-257. IEEE (2009)

Li, L., McCann, J., Pollard, N.S., Faloutsos, C.: Dynammo: mining and summariza-
tion of coevolving sequences with missing values. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
507-516. ACM (2009)

Mathioudakis, M., Koudas, N., Marbach, P.: Early online identification of attention
gathering items in social media. In: Proceedings of the Third ACM International
Conference on Web Search and Data Mining, pp. 301-310. ACM (2010)
Matsubara, Y., Sakurai, Y.: Regime shifts in streams: real-time forecasting of co-
evolving time sequences. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1045-1054. ACM (2016)
Matsubara, Y., Sakurai, Y., Faloutsos, C.: Autoplait: automatic mining of co-
evolving time sequences. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pp. 193-204. ACM (2014)

Matsubara, Y., Sakurai, Y., Faloutsos, C.: The web as a jungle: non-linear dynam-
ical systems for co-evolving online activities. In: Proceedings of the 24th Interna-
tional Conference on World Wide Web, pp. 721-731. ACM (2015)

Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE
Eng. Med. Biol. Mag. 20(3), 45-50 (2001)

Rakthanmanon, T., Keogh, E.J., Lonardi, S., Evans, S.: MDL-based time series
clustering. Knowl. Inf. Syst. 33(2), 371-399 (2012)

Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846-850 (1971)

Rissanen, J.: A universal prior for integers and estimation by minimum description
length. Ann. Stat. 11(2), 416-431 (1983)

Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43-49 (1978)
Shieh, J., Keogh, E.: iSAX: indexing and mining terabyte sized time series. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 623-631. ACM (2008)

Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for com-
bining multiple partitions. J. Mach. Learn. Res. 3(Dec), 583-617 (2002)

Sun, H., Lui, J.C., Yau, D.K.: Distributed mechanism in detecting and defending
against the low-rate TCP attack. Comput. Netw. 50(13), 2312-2330 (2006)
Wagner, G.S.: Marriott’s Practical Electrocardiography. Lippincott Williams &
Wilkins, Philadelphia (2001)

Wang, P., Wang, H., Wang, W.: Finding semantics in time series. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data, pp.
385-396. ACM (2011)

Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time
series data. Data Min. Knowl. Discov. 26(2), 1-35 (2013)

Yankov, D., Keogh, E., Rebbapragada, U.: Disk aware discord discovery: finding
unusual time series in terabyte sized datasets. In: Seventh IEEE International
Conference on Data Mining, ICDM 2007, pp. 381-390. IEEE (2007)



	BEATLEX: Summarizing and Forecasting Time Series with Patterns
	1 Introduction
	2 Background and Related Work
	3 Problem Definition
	4 Model
	5 Optimization Objective
	5.1 Model Cost
	5.2 Data Cost
	5.3 Final Cost Function

	6 BEATLEX Summarization Algorithm
	6.1 Overview
	6.2 Best Vocabulary-Prefix Match
	6.3 Vocabulary Merge (VOCABMERGE)
	6.4 New Vocabulary Term Generation (NEWVOCABLENGTH)
	6.5 Computation Time and Memory
	6.6 Extensions

	7 Experiments
	7.1 Data
	7.2 Q1: Labelling Accuracy
	7.3 Q2: Forecasting Accuracy
	7.4 Q3: Scalability
	7.5 Q4: Discoveries and Interpratability

	8 Conclusion
	References




