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Abstract
How does the graph change if we summarize it by merging
nodes? How can we summarize the graph while preserving
its spectral characteristics? Graph summarization aims
to present a graph in a compact summary graph form
while keeping its important structural information. Existing
methods primarily focus on preserving the adjacency matrix.
In contrast, spectral graph theory provides a powerful tool
to describe the characteristics of a graph. In this paper, we
propose a novel graph summarization method that preserves
the spectral characteristics, including spectral moments
and heat traces. We analyze the change of the spectral
characteristics after summarization and design a simple
yet effective summarization method based on agglomerative
clustering. Our approach is extensively evaluated on real-
world datasets. The experimental results show that our
method excels in preserving the spectral characteristics
and obtains better performance on the subsequent graph
classification task.

Keywords: Graph Summarization, Spectral Dis-
tribution, Spectral Graph Theory

1 Introduction
Graph analysis is a fundamental task in many real-world
applications, such as social network analysis, drug dis-
covery, and recommendation systems. Generally, an-
alyzing large graphs is a challenging task due to the
high computational complexity. Graph summarization
addresses this problem by finding a compact represen-
tation of a graph, typically in the form of a summary
graph, while preserving its structural information. The
resulting summary graph can serve as a proxy for the
original graph and be utilized for further analysis.

The main questions in the graph summarization
are what property to preserve and how to compare
the property of the original graph and the summary
graph. For the first question, most existing works focus
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†Corresponding Author. Email: liushenghua@ict.ac.cn

on preserving the adjacency matrix as it is the most
fundamental representation of a graph. However, the
adjacency matrix is easily affected by perturbation and
lacks robustness to noise. Additionally, some high-
order properties, such as degree distribution, global
connectivity are not directly reflected in the adjacency
matrix.

On the other hand, spectral graph theory pro-
vides an alternative perspective for understanding a
graph [5]. For instance, the spectral gap of a graph,
i.e., the second-smallest eigenvalue of the Laplacian
matrix, is closely associated with the graph connec-
tivity [10]. Compared to discrete graph representa-
tions (adjacency matrix), spectral features are more ro-
bust to noise and perturbation. Due to these advan-
tages, spectral features have been widely used in graph
analysis [14, 26, 25]. Therefore, it is highly desirable to
preserve the spectral characteristics of a graph during
summarization.

There are some existing works that study the prob-
lem of preserving the spectral properties of graphs.
[19, 18] consider preserving the spectral properties of
a restricted eigenspace. [15] aims to minimize the spec-
tral distance regarding the perturbation of eigenvalues.
In this work, we study the problem of graph summariza-
tion for preserving the spectral characteristics of graphs.
We focus on two types of spectral characteristics closely
related to graph structure, spectral moment and heat
trace. We show that the spectral moment and the heat
trace of the summary graph is equivalent to that of the
degree-preserving reconstructed graph, and build a con-
nection between the spectral properties of the summary
graph and the original graph. Furthermore, we con-
duct in-depth analysis of the loss of spectral properties
in the graph summarization process and derive the up-
per bound of it to the loss of the normalized adjacency
matrix. Based on the analysis, we design a novel graph
summarization method for preserving the spectral char-
acteristics of graphs based on agglomerative clustering.
We perform extensive experiments on several synthetic
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and real-world datasets and show that our method can
effectively preserve the spectral characteristics of graphs
and outperform the state-of-the-art methods.

In summary, the contribution of this work is as
follows:

• We establish a connection between the spectral
characteristics of the summary graph and the orig-
inal graph via the degree-preserving reconstructed
graph.

• We analyze the loss of spectral characteristics in the
graph summarization and derive the upper bound
of it to the loss of the normalized adjacency matrix.

• We propose a simple yet effective graph summa-
rization method for preserving the spectral charac-
teristics of graphs.

• We perform extensive experiments on multiple
datasets and show that our method can effectively
preserve the graph spectral characteristics.

Reproducibility: The code of our method
is available at https://github.com/HQJo/
SpectralCharacteristicSumm.

2 Related Work
2.1 Graph Summarization Graph summarization
is a family of methods that aims to reduce the size of
a graph while preserving its crucial structural informa-
tion. The reconstruction error of the adjacency matrix
is the most commonly employed metric for assessing
graph summarization. It is defined as some norm (e.g.,
Frobenius norm) of the difference between the original
adjacency matrix and the reconstructed one. The recon-
structed graph is derived from the summary graph via a
specific reconstruction method. For instance, k-Gs [17]
aims to find a summary graph with at most k supern-
odes, such that the L1 reconstruction error is minimized.
Riondato et al. [24] establish a connection between the
geometric clustering problem and the graph summariza-
tion problem, and propose a polynomial-time approxi-
mate graph summarization method based on geometric
clustering algorithms. Beg et al. [1] develop a random-
ized algorithm SAA-Gs using weighted sampling and
count-min sketch [6] techniques to find promising node
pairs efficiently. SpecSumm [20] reformulates the error
minimization problem as a trace optimization problem
and propose using the k-largest eigenvectors of the ad-
jacency matrix to obtain the summary graph.

Besides the adjacency matrix, some works also con-
sider other graph properties such as spectral properties.
For instance, [19, 18] propose to preserve the princi-
pal eigenvectors and eigenspaces of the original Lapla-
cian matrix. GraphZoom [8] proposes merging nodes

based on their spectral similarity. [15] proposes using
the spectral distance (i.e., absolute deviation of eigen-
values) to measure the difference between the original
graph and the summary graph, and designs two sum-
marization methods, MGC and SGC, to minimize the
spectral distance.

2.2 Graph Feature Extraction Extracting repre-
sentative features from graphs is a fundamental problem
in graph analysis. It aims to map each graph to a low-
dimensional vector space that can be utilized for down-
stream tasks. Existing methods can be roughly cate-
gorized into two main approaches: explicit constructing
methods and implicit learning methods.

Constructing-based methods constructs features in
an explicit way. These features may consider (1) the
basic descriptive properties of graphs, including
degrees, clustering coefficients, and centrality measures,
etc. For example, NetSimile [2] extracts 7 features from
each node, including the number of neighbors, average
degree, number of edges in ego-network, clustering coef-
ficient, average clustering coefficient, number of outgo-
ing edges from ego-network, and number of neighbors
of ego-network. Graph signatures are then generated
using 5 aggregators like median, mean, standard devia-
tion, skewness and kurtosis. (2) spectral properties.
[7] gives a simple method employing the k smallest pos-
itive eigenvalues of Laplacian matrix as features. [14]
employs the moment of spectral density distribution and
proposes spectral moment to characterize the properties
of graphs. NetLSD [26] proposes heat trace derived from
the graph heat kernel as features. VNGE [3, 22, 11, 21]
transfers the Von Neumann entropy in quantum infor-
mation theory to graphs and proposes Von Neumann
graph entropy as features. FINGER [4] develops effi-
cient algorithms to approximate VNGE. SLaQ [27] en-
hances the efficiency of NetLSD and VNGE leveraging
the stochastic Lanczos quadrature method in numeri-
cal linear algebra. (3) high-level structural infor-
mation, such as the shortest path, random walk, and
graphlets. This kind of methods are closely related to
graph kernels [16]. Since construction-based methods
are constructed explicitly, it is easy to interpret and
explain.

Learning-based methods, on the other hand, lever-
age the great power of machine learning methods
to learn representative features implicitly. The
state-of-the-art methods are based on graph neural
networks (GNNs). Representative methods include
GIN [30], DGCNN [32], and DiffPool [31]. Learning-
based methods typically adopt an end-to-end train-
ing framework, which lack interpretability compared to
constructing-based methods.
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Table 1: Notations used in this paper.

Notation Description

G = (V, E) Original graph with nodeset V and edgeset
E

A, D Adjacency matrix and degree matrix of G
Gs,As Summary graph and its adjacency matrix
Gr,Ar Reconstructed graph and its adjacency ma-

trix
n, ns Sizes of G and Gs

di, Dk Degree of node vi and supernode Sk

L/Ls/Lr Normalized Laplacian matrix of G/Gs/Gr

A/As/Ar Normalized adjacency matrix of G/Gs/Gr

Figure 1: An example of graph summarization. The
original graph with 9 nodes is summarized into a
summary graph with 3 supernodes.

3 Backgrounds
3.1 Graph Summarization Let G = (V, E) be the
original graph with nodeset V, edgeset E and adjacency
matrix A. Graph summarization aims to find a sum-
mary graph Gs = (Vs, Es) such that Gs can well preserve
the key properties of G. The typical way is to aggregate
nodes of G into supernodes of Gs. This process can be
formulated by a summarization matrix P ∈ {0, 1}ns×n:

(3.1) P(k, i) =

{
1, if node vi in supernode Sk
0, otherwise

The adjacency matrix of the summary graph As =
PAP⊤ is the aggregation of edges in the original graph.

(3.2) As(k, l) =
∑

vi∈Sk

∑
vj∈Sl

A(i, j)

Fig. 1 shows an example of graph summarization.
To measure the quality of the summary graph, a re-

constructed graph is obtained from Gs by some specific
reconstruction method and is compared with the orig-
inal graph G. Here we introduce the degree-preserving
reconstruction method [34]. It is based on the configura-
tion model and the corresponding reconstructed graph
has the same degree distribution as the original graph.
The reconstruction process can be expressed using a re-

construction matrix Q ∈ Rn×ns :

(3.3) Q(k, i) =

{
di

Dk
, if node vi in supernode Sk

0, otherwise

where Dk =
∑

vi∈Sk
di is the degree of supernode Sk.

The corresponding reconstructed adjacency matrix is
Ar = QAsQ

⊤.

(3.4) Ar(i, j) =
di
Dk

As(k, l)
dj
Dl

(i ∈ Sk, j ∈ Sl)

3.2 Graph Spectral Characteristics Graph spec-
tral characteristics describe the graph properties lever-
aging spectral graph theory. These characteristics are
based on the eigenvalues and eigenvectors of the ad-
jacency matrix or the Laplacian matrix. Recently,
there has been a growing trend in modelling the graph
through the global distribution of its eigenvalues, a.k.a.,
the spectral density or density of states (DOS) [9, 25,
12, 4]. The spectral distribution is defined in the form
of generalized function [9]:

(3.5) p(λ) =
1

n

n∑
i=1

δ(λ− λi)

where δ is the Dirac delta function.
By treating eigenvalues as a distribution, proba-

bilistic tools can be leveraged to characterize various
graph properties. Two representative examples are the
spectral moment [14] and the heat trace [26].

[14] proposes the spectral moment {mk}k=1,2,...,
originated from the moment of the spectral density
distribution, to characterize graph properties. It is
equivalent to the average return probabilities of k-step
random walk.

mk(G) = E[µk] =
1

n

n∑
i=1

µk
i =

1

n

n∑
i=1

(D−1A)k(i, i)

Here µi is the i-th eigenvalue of the random walk matrix
D−1A (and the normalized adjacency matrix A). It is
shown that the spectral moments are closely related to
graph structure and various graph properties including
degree distribution and clustering coefficient [14, 13, 23].

[26] proposes heat trace, defined as the trace of
the heat kernel matrix exp(−tL) to construct graph
signatures for graph classification. It is closely related
to the moment generating function of the spectral
distribution.

(3.6)
ht(G) = tr(exp(−Lt)) =

n∑
i=1

exp(−λit)

= exp(−t)
n∑

i=1

exp(µit)
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Here λi is the i-th eigenvalue of the normalized Lapla-
cian matrix L.

By expanding exp(−λt) as series, we have

(3.7)
ht(G) = exp(−t)

n∑
i=1

∞∑
k=0

tk

k!
µk
i

= n ·
∞∑
k=0

exp(−t) t
k

k!
mk(G)

That is, the heat trace can be regarded as a
weighted sum of spectral moments. The weight of
the k-th spectral moment exp(−t) tkk! is the probability of
a Poisson random variable with parameter t taking value
k. Thus, the heat trace can be viewed as the average
return probability of Poisson-length random walks.

Spectral moments and heat trace can be further
unified in a general form using a test function f(·) [9].

(3.8)
∫

f(λ)p(λ) = tr(f(L))

For spectral moments, f(λ) = 1
n · λ

k. For heat trace,
f(λ) = exp(−λt).

4 Proposed Methods
In this section, we present our graph summarization
method aimed at preserving graph spectral characteris-
tics. We first investigate the spectral characteristics of
summary graphs, and build a connection between the
spectral characteristics of the summary graph and the
original graph via the degree-preserving reconstructed
graph. We then analyze the loss of spectral characteris-
tics after merging two nodes and derive an upper bound
of it. Based on the insights gained from the analysis, we
propose a simple graph summarization method based on
agglomerative clustering to preserve the spectral char-
acteristics of graphs.

4.1 Spectral characteristics of summary graphs
To compare the spectral characteristics of the summary
graph and the original graph, we first analyze the
spectral characteristics of the summary graph. As we
show next, both spectral moments and heat trace
of the summary graph is related to that of the
degree-preserving reconstructed graph.

Theorem 4.1. The trace of the k-th power of the
normalized adjacency matrix of the summary graph
is exactly that of the degree-preserving reconstructed
graph(defined in Eq. (3.4)).

(4.9) tr(Ak
s) = tr(Ak

r ) k ∈ N+

Proof. For convenience, we first introduce matrix R ∈
Rn×ns defined as:

(4.10) R(i, k) =

{√
di

Dk
, if vi ∈ Sk

0, otherwise

Note that R⊤R = I and thus the columns of R are or-
thonormal. As shown in [33], the normalized adjacency
matrix of the summary graph and the reconstructed
graph are related by:

(4.11) Ak
r = RAk

sR
⊤ (k ∈ N+)

Hence,

tr(Ak
r ) = tr(RAk

sR
⊤) = tr(Ak

sR
⊤R) = tr(Ak

s)

That is, the trace of the k-th power of the normalized
adjacency matrix of the summary graph is exactly that
of the degree-preserving reconstructed graph.

As a result, the un-normalized k-th spectral mo-
ment of the summary graph is exactly that of the degree-
preserving reconstructed graph.

ns ·mk(Gs) = tr((D−1
s As)

k) = tr(Ak
s)

= tr(Ak
r ) = n ·mk(Gr)

Thus, we can use mk(Gr) as a proxy of mk(Gs) to
compare the spectral moments of the summary graph
and the original graph.

Similar conclusion can be easily drawn for the heat
trace.

Theorem 4.2. The heat trace of the summary graph
are different from that of the degree-preserving recon-
structed graph by a constant arising from the size dif-
ference.

Proof.

ht(Gs) = ns ·
∞∑
k=0

exp(−t) t
k

k!
mk(Gs)

= ns ·

(
exp(−t) +

∞∑
k=1

exp(−t) t
k

k!
mk(Gs)

)

= ns · exp(−t) + n ·
∞∑
k=1

exp(−t) t
k

k!
mk(Gr)

= n ·
∞∑
k=0

exp(−t) t
k

k!
mk(Gr)− exp(−t)(n− ns)

= ht(Gr)− exp(−t)(n− ns)

Thus, the heat trace of the summary graph and that of
the reconstructed graph are only different by a constant
arising from the size difference.
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4.2 Loss of spectral characteristics As shown in
Theorem 4.1 and Theorem 4.2, the spectral character-
istics of summary graphs are closely related to that of
reconstructed graph. Therefore, we aim to utilize the
latter as a surrogate for the former and compare it with
that of original graphs. Since the two spectral char-
acteristics originate from the spectral distribution, our
objective is to minimize the discrepancy of the spectral
distribution to minimize the loss of spectral character-
istics.

By [9], the Wasserstein distance between the spec-
tral distribution of the original graph and that of the
reconstructed graph is upper bounded by the Frobenius
norm of the difference of the normalized adjacency ma-
trix.

Theorem 4.3. (c.f. Theorem 4.2 in [9])

W1(G,Gr) ≤ ∥A−Ar∥F

Thus, we can minimize the Frobenius norm of the dif-
ference of the normalized adjacency matrix to minimize
the spectral difference. We first reformulate the Frobe-
nius norm as:

Lemma 4.1.

(4.12) ∥A−Ar∥2F = ∥A∥2F − ∥Ar∥2F

Proof. To prove this, we first show that As =
R⊤AR (where R is defined in Eq. (4.10)).

(4.13)

R⊤AR(k, l) =
∑
i,j

R(i, k)A(i, j)R(j, l)

=
∑

vi∈Sk,vj∈Sl

√
di
Dk

A(i, j)√
didj

√
dj
Dl

=
∑

vi∈Sk,vj∈Sl

1√
Dk

A(i, j)
1√
Dl

=
1√
Dk

As(k, l)
1√
Dl

= As(k, l)

And,
(4.14)
∥A−Ar∥2F = tr((A−Ar)

⊤(A−Ar))

= tr(A2) + tr(A2
r)− 2 tr(AAr)

= tr(A2) + tr(A2
r)− 2 tr(ARAsR

⊤)

= tr(A2) + tr(A2
r)− 2 tr(R⊤ARAs)

= tr(A2) + tr(A2
s)− 2 tr(A2

s)

= tr(A2)− tr(A2
s)

= ∥A∥2F − ∥As∥2F

Algorithm 1 Graph Summarization for Preserving
Spectral Characteristic.
Input: Input graph G, summary size k
Output: Gr

1: Gr ← G
2: M← D−1AD− 1

2

3: Gr ← AgglomerativeClustering(M, k)
4: return Gr

Given Lemma 4.1, we only need to analyze the
difference of ∥A∥2F and ∥Ar∥2F , which is much more
concise and easier to analyze. We will analyze the effect
of merging two nodes. In short, by merging two node
a and b, the difference of ∥Ar∥2F and ∥A∥2F is upper
bounded by:
Theorem 4.4.

(4.15) ∥A∥2F−∥Ar∥2F ≤ H(da, db)
∥∥∥D− 1

2AD−1(δa − δb)
∥∥∥2

2

where H(da, db) is the harmonic mean of da and db.

Proof. See appendix.

The right-hand side of Eq. (4.15) consists of two
terms. The first term H(a, b) is the harmonic mean of
da and db. The second term is the Euclidean distance
between the a-row and b-row of the matrix D−1AD− 1

2 .
This gives us two implications:

• Nodes with small degrees have higher priority to be
merged together since H(a, b) ≥ min{da, db}. To
make sure H(a, b) is small, we need to make sure
da and db are not too large.

• The a-row and b-row of D−1AD− 1
2 matrix should

be close to minimize the second term. This aligns
with the intuition that nodes with similar neighbors
should be merged together.

4.3 Algorithm Based on the aforementioned anal-
ysis, we propose a simple yet effective graph summa-
rization method. Our method adopts an agglomerative
clustering strategy. Initially, each node is treated as
a supernode containing only itself. At each step, the
method merges two supernodes with the highest prior-
ity. According to Eq. (4.15), we define the priority of
supernode pair (a, b) as the ℓ2 norm of the difference be-
tween the a-row and b-row of D−1AD− 1

2 matrix. The
process is repeated until the number of supernodes is re-
duced to the desired summary size. We implement the
process using agglomerative clustering with ward link-
age [29] and use heap data structure to maintain the
priority of supernode pairs and improve the efficiency.
The detailed algorithm is shown in Alg. 1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited275

D
ow

nl
oa

de
d 

04
/2

0/
24

 to
 1

.2
03

.9
8.

12
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Table 2: Dataset statistics.

Dataset #Graphs #Classes Avg. Size
MUTAG 188 2 17.93
PTC 344 2 25.53
ENZYMES 600 6 32.63
PROTEINS 1,113 2 39.06
IMDB-B 1,000 2 19.77
IMDB-M 1,500 3 13.00
REDDIT-B 2,000 2 429.6
REDDIT-M 5,000 5 508.5

5 Experiments
In this section, we perform experiments to answer the
following questions:

• Q1: How well does the proposed method preserve
the spectral characteristics compared to baselines?

• Q2: How does the proposed method affect the
performance of graph classification compared to
baselines?

• Q3: How efficient is the proposed method compared
to baselines?

Datasets We use 8 real-world datasets from bioin-
formatics and social networks. MUTAG, PTC, EN-
ZYMES and PROTEINS are chemical compounds and
proteins represented as graphs. IMDB-B, IMDB-M,
REDDIT-B and REDDIT-M contains graphs sampled
from social networks. The detailed statistics of the
datasets are shown in Table 2.

Baselines We compare our method with the fol-
lowing baselines:

• Spectral Clustering [28]. Spectral clustering is
a classical graph clustering method based on the
eigenvectors of the Laplacian matrix.

• MGC [15]. MGC adopts the iterative merging
framework and performs multi-level summarization
according to the connectivity of nodes.

• SGC [15]. SGC utilizes eigenvectors with the
eigenvalues corresponding to the head and tail
eigenvalues and runs k-means clustering on the
eigenvectors to summarize the graph.

• GraphZoom [8]. GraphZoom is a spectral coarsen-
ing method merging nodes with high similarity in
the spectral representations.

• Local Variation [18]. Local variation method con-
siders spectral similarity on a restricted subspace

and summarize the graph by contracting sets of
nodes.

Implementation We implement our method in
Python and perform experiments on a machine with
Intel Xeon E5-2640 v4 CPU and 128 GB RAM. For
baselines, we use the source codes provided by the
authors.

5.1 Q1. Spectral Characteristics Preservation
In this experiment, we evaluate the effectiveness of
our method in preserving the spectral characteristics of
graphs.

Settings We calculate eigenvalues, spectral mo-
ments and heat trace of the original graph and the sum-
mary graph, and compare their difference as the metric
of spectral characteristics’ preservation. Smaller differ-
ence indicates better preservation of spectral character-
istics. For eigenvalues, we report the mean absolute
difference as “eigenvalue loss”. For spectral moments,
we calculate the first 4 order moments (following [14])
of the original graph and the summary graph, and re-
port the mean absolute difference as “spectral moment
loss”. For heat trace, the time parameter t is from 0.025
to 2.5 and contains 100 points distributed uniformly in
the logarithmic scale. We report the mean absolute dif-
ference as “heat trace loss”.

Results The results are shown in Table 3. From
the results, we have several observations. On small
datasets like MUTAG and PTC, MGC achieves the
smallest loss in all metrics while our methods achieve
the second-best or the third-best performance. For
larger datasets, our method achieves the smallest loss
in spectral characteristics in most cases. On two
REDDIT datasets, our method obtains much smaller
loss in all metrics than other methods. For example,
on REDDIT-M dataset, our method gets 11.68 times
smaller eigenvalue loss than the second-best method.
We also give the average rank of each method at
the bottom of Table 3. Our method achieves the
best rank in eigenvalue loss and heat trace loss and
the second-best rank in spectral moment loss. These
results demonstrate the effectiveness of our method in
preserving the spectral characteristics of graphs.

5.2 Q2. Performance of Graph Classification
In this experiment, we aim to assess the preservation of
graph spectral properties by evaluating the performance
of downstream graph classification tasks. A better
classification performance indicates better preservation
of spectral properties.

Settings For each dataset, we apply multiple sum-
marization methods to summarize each graph in the
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Table 3: Spectral characteristic loss of different methods on multiple datasets. Three types of metrics, i.e.,
eigenvalue, spectral moment, and heat trace, are used to measure the spectral characteristic loss. The best and
the second-best scores are highlighted in bold and underline, respectively. ‘-’ denotes running out of time (> 6
hours).

Dataset Loss MGC SGC Spectral Clustering GraphZoom Local Variation Ours

MUTAG
eigenvalue loss 0.206 0.218 0.325 0.309 0.280 0.220
spectral moment 2.456 2.805 4.320 3.985 4.049 2.609
heat trace 0.193 0.229 0.351 0.254 0.339 0.228

PTC
eigenvalue 0.211 0.225 0.319 0.299 0.287 0.259
spectral moment 2.153 2.714 3.933 3.449 3.947 2.368
heat trace 0.184 0.238 0.358 0.232 0.352 0.222

ENZYMES
eigenvalue 0.146 0.150 0.216 0.197 0.172 0.145
spectral moment 4.102 4.300 5.265 4.769 4.876 4.129
heat trace 0.235 0.280 0.449 0.328 0.482 0.225

PROTEINS
eigenvalue 0.148 0.152 0.216 0.199 0.173 0.147
spectral moment 5.225 5.499 6.773 6.183 6.660 5.288
heat trace 0.317 0.358 0.575 0.418 0.629 0.316

IMDB-B
eigenvalue 0.681 0.721 0.997 1.358 0.793 0.679
spectral moment 2.243 2.281 2.443 2.382 2.245 2.240
heat trace 0.233 0.194 0.210 0.115 0.223 0.227

IMDB-M
eigenvalue 0.608 0.629 0.776 1.203 0.747 0.607
spectral moment 1.355 1.370 1.440 1.366 1.601 1.354
heat trace 0.137 0.122 0.126 0.049 0.152 0.145

REDDIT-B
eigenvalue - - 0.216 0.233 0.204 0.042
spectral moment - - 72.860 64.699 63.862 45.412
heat trace - - 3.741 3.576 3.296 0.631

REDDIT-M
eigenvalue - - 0.219 0.245 0.222 0.019
spectral moment - - 72.860 64.699 63.862 45.412
heat trace - - 3.741 3.576 3.296 0.631

Avg Rank
eigenvalue 1.667 2.667 4.875 5.000 3.625 1.500
spectral moment 1.333 3.333 5.250 3.750 4.250 1.500
heat trace 2.833 2.667 4.375 3.000 4.500 2.250

Table 4: Graph classification accuracy on summary graphs generated by different methods. The best and the
second-best scores are highlighted in bold and underline, respectively. Orig is the classification accuracy on the
original graphs. ‘-’ denotes running out of time (> 6 hours).

MUTAG PTC ENZYMES PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-M

Orig 87.78 60.19 38.51 74.46 72.00 48.00 85.32 45.73

MGC 86.72 60.27 29.66 74.59 70.86 46.84 - -
SGC 87.20 59.86 29.77 73.79 68.67 47.36 - -
Spectral Clustering 85.44 57.88 32.03 73.95 68.02 48.37 81.26 41.99
GraphZoom 82.50 57.33 28.92 74.61 65.97 41.37 81.45 42.60
Local Variation 83.72 58.59 29.77 73.48 69.65 47.53 82.67 42.53
Ours 88.25 61.19 30.52 74.82 71.96 46.71 84.75 44.76

dataset. The summarization ratio is set to 0.5 for all
datasets, meaning that the size of the summary graph
is 50% of the original graph size. Additionally, to ensure
that the summary graph is not too small and remains
meaningful, we set the minimum size of the summary
graph to 5. We evaluate the classification performance
on the original graphs and the summary graphs gener-
ated by different methods. By comparing the perfor-
mance, we can evaluate the quality of the summarized
graphs.

To extract graph features for classification, we uti-
lize the heat-trace-based method NetLSD [26] with de-
fault parameters. We employ SVM as the classifier and
perform grid search to find the best hyperparameters
of SVM for each method. For the linear kernel, the
range of parameter C is [10−3, 10−2, 10−1, 1, 10, 102]; for
the RBF kernel, the range of parameter C is the same
as the linear kernel, and the range of parameter γ is
[10−3, 10−2, 10−1, 1, 10, 102, 103]. To evaluate the clas-
sification performance, we use 10-fold cross validation
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(h) RDT-M

Figure 2: Running time of different methods on multiple
datasets. ‘GZ’, ‘SC’, and ‘LV’ are short for GraphZoom,
Spectral Clustering, and Local Variation, respectively.

and report the average accuracy over 10 runs.
Results The classification results are presented

in Table 4. Our method achieves the highest clas-
sification accuracy on all dataset except ENZYMES
and IMDB-MULTI. Spectral clustering (SC) performs
the best on ENZYMES dataset where our method at-
tains the second-best performance. Notably, on some
dataset (MUTAG, PTC and PROTEINS), our accuracy
scores are even higher than the classification accuracy
scores on original graphs. These results demonstrate
that our method can preserve the spectral properties of
graphs well and thus improve the performance of graph
classification task.

5.3 Q3. Efficiency In this experiment, we evaluate
the efficiency of our method compared to baselines.

Settings Similar to the previous experiment, we
apply multiple summarization methods to summarize
each graph in the dataset. The summarization ratio is
set to 0.5 for all datasets, meaning that the size of the
summary graph is 50% of the original graph size. We
report the average runtime of each method over 10 runs.

Results The results are shown in Fig. 2. Our
method achieves the best efficiency on all datasets
except two REDDIT datasets. Compared to MGC,
which also adopts the iterative merging framework, our
method is more efficient. That is because our method
utilizes heap to maintain the similarity between nodes
and thus achieves better efficiency. Note that our
method only use the fundamental agglomerative clus-
tering algorithm, and further optimization is possible.

6 Conclusion and Discussion
In this work, we study the problem of preserving graph
spectral characteristics (i.e., spectral moment and heat

trace) in graph summarization. We perform analysis on
the loss of spectral characteristics after summarization
and relate it to the loss of the normalized adjacency
matrix. Based on the analysis, we propose a simple
yet effective graph summarization method based on
agglomerative clustering. We validate the analysis on 8
real-world datasets and the effectiveness of our method
on preserving the spectral characteristics of graphs.

There are some interesting directions for future
work. (1) More spectral characteristics. In this
work, we only investigate two kinds of spectral charac-
teristics, spectral moment and heat trace, which can be
seen as the moment and the moment generating function
of the spectral distribution. Based on the spectral dis-
tribution, more spectral characteristics can be defined.
We hope more spectral characteristics can be unified
into this framework and more general conclusion can be
drawn for general spectral characteristics. (2) Com-
bine with the attribute information. The spec-
tral characteristics investigated in this work are merely
based on the structural information of the graph. How-
ever, real-world graphs may contain rich attribute in-
formation. It would be useful to study combining the
attribute information with the structural information
together in graph summarization. (3) More compre-
hensive analysis. The summary graph can serve as
a proxy for the original graph in many graph analysis
tasks. It would be interesting to study how to utilize the
summary graph to perform more comprehensive analy-
sis with theoretical guarantees.
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