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Hierarchical Dense Pattern Detection in Tensors

WENJIE FENG, Institute of Data Science, National University of Singapore

SHENGHUA LIU and XUEQI CHENG, CAS Key Laboratory of Network Data Science and

Technology, Institute of Computing Technology, Chinese Academy of Sciences

Dense subtensor detection gains remarkable success in spotting anomalies and fraudulent behaviors for multi-

aspect data (i.e., tensors), like in social media and event streams. Existing methods detect the densest subten-

sors flatly and separately, with the underlying assumption that those subtensors are exclusive. However,

many real-world tensors usually present hierarchical properties, e.g., the core-periphery structure and dy-

namic communities in networks. It is also unexplored how to fuse the prior knowledge into dense pattern

detection to capture the local behavior.

In this article, we propose CatchCore, a novel framework to efficiently find the hierarchical dense subten-

sors. We first design a unified metric for dense subtensor detection, which can be optimized with gradient-

based methods. With the proposed metric, CatchCore detects hierarchical dense subtensors through the

hierarchy-wise alternative optimization and finds local dense patterns concerning some items in a query

manner. Finally, we utilize the minimum description length principle to measure the quality of detection re-

sults and select the optimal hierarchical dense subtensors. Extensive experiments on synthetic and real-world

datasets demonstrate that CatchCore outperforms the top competitors in accuracy for detecting dense sub-

tensors and anomaly patterns, like network attacks. Additionally, CatchCore successfully identifies a hier-

archical researcher co-authorship group with intense interactions in the DBLP dataset; it can also capture

core collaboration and multi-hop relations around some query objects. Meanwhile, CatchCore also scales

linearly with all aspects of tensors.

CCS Concepts: • Information systems→ Data mining; • Computing methodologies→ Anomaly detec-

tion; • Theory of computation→ Data structures and algorithms for data management
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tern query
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1 INTRODUCTION

Dense subgraph and subtensor detection have been successfully used in a variety of application
domains, such as detecting anomalies or fraudulent patterns (e.g., lockstep behavior, boosting
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ratings, and ill-gotten Page Likes) in social media or online review sites [Beutel et al. 2013; Hooi
et al. 2016; Jiang et al. 2015], identifying malicious attacks in network traffic logs or streaming
data [Maruhashi et al. 2011; Shin et al. 2016, 2017a], and spotting changing gene-communities in
biological networks [Wong et al. 2018], and so on.

Several algorithms detected the densest subtensors or blocks flatly, i.e., detect-remove-redetect
one by one, assuming that those subtensors are exclusive and separate [Duong et al. 2020; Jiang
et al. 2015; Shin et al. 2016, 2018, 2017b; Yikun et al. 2019]. However, many real-world graphs
and tensors usually present hierarchical properties, like the core-peripheral structure in networks
[Gallagher et al. 2021; Kostoska et al. 2020], dynamic communities in social media [Chen and Saad
2010; Leskovec et al. 2008], critical disease-spreading conduits [Kitsak et al. 2010], and evolving
behaviors [Rossi et al. 2020; Yang et al. 2013]. So, it will be difficult to identify the subtle structures
(like a multi-layer core) within the dense block and the relations (e.g., overlapping or inclusion)
among different blocks. Meanwhile, other methods for community detection [Chen and Saad 2010;
Edler et al. 2017; Yang et al. 2013, 2011] and dense subgraph detection [Hooi et al. 2016; Sariyüce
and Pinar 2016; Zhang et al. 2017] only concentrated on the general graph. Existing hierarchical
tensor decomposition approaches [Grasedyck 2010; Song et al. 2013] can also not be applied to the
dense subtensor detection scenarios.

One challenging problem is how to detect the hierarchical dense subtensors efficiently in the
multi-aspect data, and Figure 1(a) illustrates an example of the TCP dumps scenario. The network
intrusion attacks dynamically changed in interacting intensity at different phases over time and
among various hosts (i.e., from source-IP to destination-IP), leading to a multi-layer and high-
density core. Hence, hierarchical dense subtensor detection aids in understanding the process and
detecting such anomalies. In addition, although data query and information retrieval have been
extensively studied, it remains an intriguing problem to investigate different granularity local be-
havior patterns of some target objects in tensors when only limited prior knowledge is available,
which can be applied to crime detection, behavior recognition, and so on.

Therefore, we propose CatchCore, a novel framework to detect hierarchical dense cores in
multi-aspect data (i.e., tensors). We first design a unified metric for defining different density mea-
sures for dense subtensor detection, where the gradient-based approaches can be utilized to opti-
mize some derived objective functions under this metric. Relying on one type of these objective
functions, CatchCore can identify hierarchical dense cores via a hierarchy-wise alternative opti-
mization technique with a convergence guarantee. In addition, we present the query-specific sub-

tensor detection problem to find the locally dense patterns relating to specific target objects in a
query-like manner.

Extensive experiments show that CatchCore outperforms the baselines and discovers various
interesting patterns in real-world datasets. CatchCore performs the best at dense block detection
without missing detection, even the density of the injected block becomes less dense (see Figure 3).
CatchCore finds hierarchical dense subtensors with a higher density than others; it captures a
dense co-authorship research group for the DBLP dataset (see Figure 1(c) and (b)) and anomalies in
other real-world data. For the local pattern detection, CatchCore can capture core collaboration
and multi-hop relationship around some query objects. Moreover, we propose to use the MDL

principle, which is an information-theoretic criterion, to measure the quality of detection result
and help to conduct the parameter/model selection and choose the optimal hierarchical dense
subtensors. Finally, our method is scalable, with linear runtime and space complexity, in all aspects
of the tensor.

In summary, our main contributions are as follows.
— Unified metric and algorithm: We design a unified metric that can be optimized with

the gradient-based approaches to detect dense blocks, propose CatchCore for hierarchical
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Fig. 1. Illustrative Examples and detected patterns. (a) Example and workflow of hierarchical dense
subtensors detection. (b) shows the detected dense co-authorship researcher group (a multi-layer core) of
20 users in DBLP. The densest block (red) lasts 3 years (2011–2013) containing 8 authors as the list shows,
the outer hierarchies (with different colors) include other researchers and exist in various time ranges (text
labeled). (c) CatchCore detects dense subtensors with higher density compared with baselines for the top
four densest blocks in DBLP. These blocks correspond to a hierarchical group in Figure 1(b).

dense core detection with a theoretical convergence guarantee and MDL-based quality mea-
surement, and present the query-specific dense subtensor detection for some target items.

— Accuracy: CatchCore outperforms the state-of-the-art methods in accurately detecting
dense blocks and hierarchical dense subtensors in both synthetic and real-world datasets
(Figures 3 and 1(c)).

— Effectiveness: CatchCore successfully spotted anomalous patterns, including suspicious
friend connections, periodic network attacks, and so on, found a researcher co-authorship
group with heavy interactions in a hierarchical fashion (Figure 1(b)), and captured some
locally dense patterns as core collaboration and multi-hop relations around some query ob-
jects.

— Scalability: CatchCore is scalable, with linear time and space complexity with all aspects
of tensors (Theorems 5.2 and 5.3).

Reproducibility: Our open-sourced code and the data we used are available at http://github.
com/wenchieh/catchcore.

The rest of the article is organized as follows. In Section 2, we review related work about our
topics. Section 3 provides the preliminaries & notions, and Section 4 presents our unified density-
metric framework and the problem formulation. In Section 5, we describe our proposed algorithm,
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CatchCore, and analyze its complexity. After providing experimental results in Section 6, we
conclude in Section 7.

2 BACKGROUND AND RELATED WORK

In this section, we present a survey for the problem, algorithms for the dense pattern and hierar-
chical structure detection in graph and tensor, and the important related application scenario, i.e.,
anomaly detection.

Dense Subgraph/Subtensor Detection in Graph and Tensor. The detection of dense subgraphs has
been extensively studied in theory [Charikar 2000; Gibson et al. 2005; Jethava et al. 2013; Lee
et al. 2010]. This task is inherently hard, and determining the densest subgraphs and subtensors
is primarily an NP-hard problem [Asahiro et al. 2002]. Instead of detecting exactly the densest
subgraph via max-flow-based algorithms [Goldberg 1984], greedy approximation methods give a
1/2-approximation to the optimal solutions [Chakrabarti et al. 2004; Khuller and Saha 2009]. These
related algorithms were applied to mine formal concepts [Ignatov et al. 2013], detect community
structure [Balalau et al. 2015; Chen and Saad 2010; Zhang et al. 2017] and anomaly [Akoglu et al.
2015; Hooi et al. 2016], and also extended to multi-aspect data (tensor) [Duong et al. 2020; Shin
et al. 2016, 2018, 2017b; Yikun et al. 2019]. Another approach is CrossSpot [Jiang et al. 2015],
which spotted retweet boosting in Weibo; it could find suspicious dense blocks by greedily adjust-
ing the randomly chosen seed until the local optimum is attained. Tensor decomposition [Kolda
and Bader 2009], such as HOSVD and CP Decomposition (CPD), is also used to find dense sub-
tensors; MAF [Maruhashi et al. 2011], which is based on CPD, spots port-scanning activities, form-
ing dense subtensor patterns in the network traffic logs. M-Zoom [Shin et al. 2016], M-Biz [Shin
et al. 2018], and D-Cube [Shin et al. 2017b] utilized a greedy approximation approach to detect
the estimated dense-subtensors for large-scale tensors in the in- and external-memory, distributed
settings, and the density of the detected subtensors is guaranteed to be 1/N optimal for arithmetic

average mass metric; they become the state-of-the-art methods due to effectiveness, flexibility, and
efficiency. The extended variant, DenseAlert [Shin et al. 2017a] spotted dense subtensors for a
tensor stream with an incremental algorithm. ISG+D-Spot [Yikun et al. 2019] improved the approx-
imation ratio for the densest subtensors from 1/N to 1/2 by converting an input tensor to a form
of graph to reduce the number of ways and dropping all edges with weights less than a threshold;
MUST [Duong et al. 2020] could estimate multiple dense subtensors at a time and provide a higher
theoretical bound of the lower-bound estimated density. None of those methods, however, consid-
ers the relationships and structures of different blocks, and cannot trace the evolution of dense
hierarchical patterns. The evaluation of detected subtensors is just based on a specific density
measure [Jiang et al. 2015; Shin et al. 2018], which may be insufficient for some real applications.

Hierarchical Patterns Mining. Communities/Groups exist ubiquitously in various graphs [Chen
and Saad 2010; Leskovec et al. 2008]. Their hierarchical structure and evolving behavior have also
been explored in different scenes [Kumar et al. 2010; Papadimitriou et al. 2008; Rossi et al. 2020;
Yang et al. 2013, 2011]; similar hierarchical patterns pertaining on topics or concepts also occur
in document streams [Kleinberg 2003] and to events in temporal data [Siddique and Akhtar 2017].
[Gorovits et al. 2018] proposed a framework for joint-learning the overlapping structure and activ-
ity periods of communities. [Siddique and Akhtar 2017] detected video events with a hierarchical
temporal association mining mechanism for multimedia applications. HiDDen [Zhang et al. 2017]
detected hierarchical dense patterns in graph and also finds financial fraud. [Sariyüce and Pinar
2016; Sariyuce et al. 2015] used nucleus and k-core decomposition to compute and keep track of
the hierarchy of dense subgraphs given by the peeling algorithm; [Sariyüce et al. 2018] presented
local algorithms’ framework using high-order structures during the decomposition to offer high
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Table 1. Comparison of CatchCore and Related Methods (✓, � Denote “Supported” and “Partly
Supported”, Respectively)
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Tensor data ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multiple subtensors ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hierarchical structure ✓ ✓
Detection evaluation ✓ � � � � ✓ �
Item-subtensor query ✓
Local optimality ✓ ✓ ✓ ✓
Linear scalability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

scalability for parallelization and approximations. As for the tensor, some works [Grasedyck 2010;
Song et al. 2013] considered the hierarchical tensor decomposition rather than the dense struc-
ture embedded in such multidimensional arrays. In comparison, our method can deal with the
multi-hierarchical structure in tensor data, provide an information-theoretical measurement for
the detection result, and analyze the performance from many angles.

Anomaly and Fraudulent Detection. The survey [Akoglu et al. 2015] presents a systematic, thor-
ough overview and summary of the methods of detecting anomalies in graphs; incorporating addi-
tional dimensions does benefit to identifying suspicious patterns in tensors with higher specificity,
such as lockstep behavior and money laundering. The dense subgraphs or dense subtensors usu-
ally contain suspicious patterns, such as fraudsters in social networks [Hooi et al. 2016; Wong
et al. 2018; Zhang et al. 2017], port-scanning activities in network analysis [Jiang et al. 2015; Shin
et al. 2017b], as well as fake reviews [Shin et al. 2017b], vandalism and rating-attacks [Jiang et al.
2015; Shin et al. 2017b, a]. Another related line of research for discovering rare behavior patterns
in graphs includes belief propagation [Akoglu et al. 2013; Eswaran et al. 2017], HITS-like meth-
ods [Ghosh et al. 2012; Pandit et al. 2007], and change detection [Gorovits et al. 2018; Wong et al.
2018]. With the great success of graph representation learning and graph neural networks, they
can incorporate various types of information and have been widely used for anomaly detection
[Ma et al. 2021] for both semi-supervised and unsupervised scenarios. GAL [Zhao et al. 2020]
utilized the marginal loss to train GNNs for anomaly-detectable node representation and com-
bines outliers and the dense subgraph detected by several of the aforementioned unsupervised
approaches. Many proposed GNN models are applied to fake news and rumor detection [Bian
et al. 2020; Wang et al. 2019b], fraud detection [Liu et al. 2021; Wang et al. 2019a], and other finan-
cial applications [Dastidar et al. 2022; Liu et al. 2020; Yang et al. 2020; Zhang et al. 2022]. There are
still few works for pattern mining in tensors with GNNs.

As seen in Table 1, CatchCore can detect multiple dense subtensors with a hierarchical struc-
ture for tensors. It provides tools to evaluate the detection results based on the MDL principle and
can be applied to item query scenarios; it also has a local optimality guarantee for the detection
results and is linearly scalable.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 81. Publication date: February 2023.
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Table 2. Symbols and Definitions

Symbol Definition

R(A1, . . . ,AN ,C ) A relation with N dimension attributes w.r.t. a tensor
t (a1, . . . ,aN , c ) An entry (tuple) of the tensor R

N Number of modes (ways) in the tensor R
A,a Attributes and one of its value for the tensor R
Rn Set of distinct values in nth attribute An of R

MR,VR,DR Mass, volume, and cardinality-sum of the tensor R
nnz (R) Number of non-zero tuples in R

ρ (R) Density measure of tensor R

B � R Subtensor relationship: B is a subtensor of R

xn ∈ {0, 1} |Rn | An indicator vector for nth mode in R

XB = [x i ]
N
i=1 List of indicator vectors for the subtensor B

R ×̄X Full-mode product for R and X

K Maximum number of the hierarchies
λ Coefficient of the regularization term

p (> 0) Penalty for each missing (i.e., zero-valued) entry
η (> 1) Density ratio between two adjacent hierarchies

3 NOTIONS AND DEFINITIONS

In this section, we introduce the notions and concepts used in our article. Throughout the article,
vectors are denoted by boldface lower cases (e.g., x ), the scalars are denoted by lowercase letters
(e.g., c), and �x� ≡ {1, . . . ,x }. Symbols frequently used in the article are listed in Table 2, and a toy
example is given in Example 3.1.

Let R(A1, . . . ,AN ,C ) be a relation consisting of N dimension attributes denoted by
{A1, . . . ,AN }, and a non-negative measure attribute C ∈ N≥0, (see Example 3.1 for a running
example and its pictorial illustration). We use Rn to denote the set of distinct values of An whose
element is ak ∈ Rn . For each entry (tuple) t ∈ R and for each n ∈ �N �, we use t[An] and t[C] to
denote the values of An andC in t , respectively, i.e., t[An] = an and t[C] = c . Thus, the relation R

is represented as an N -way tensor of size |R1 |×· · ·× |RN |; the value of entry t of the tensor is t[C],

where it will be 0 if the corresponding tuple does not exist. Let R(n,an ) = {t ∈ R; t[An] = an }
denote all the entries of R where its attribute An is fixed to be an .

We define the mass of the tensor R as MR =
∑

t ∈R t[C], i.e., the sum of values of all tuples in
R; the volume of R is defined as VR =

∏N
n=1 |Rn | and the cardinality sum of all dimensions of R

is DR =
∑N

n=1 |Rn |.
Let Bn be a subset of the nth attribute An values of Rn for some n ∈ �N �, i.e., Bn ⊆ Rn . We

define a subtensor of the tensor R as, B = {t ∈ R; t[An] ∈ Bn ⊆ Rn ,∀n ∈ �N �}, i.e., it is the set
of tuples where each attribute An has a value in Bn . With the tensor terminology, the relation B

forms a “block” of size |B1 | × · · · × |BN |. We use B � R to depict that B is the subtensor of R.
Likewise, the mass, volume, and cardinality-sum of B are similar to those of R.

Mathematically, for anyn ∈ �N �, we can use an indicator vectorx ∈ {0, 1} |Rn | to denote whether
any an ∈ Rn belongs to Bn , and x[an] = 1 iff B(n,an ) ⊆ R(n,an ); we use the �1-norm, i.e.,
| |x | |1, to denote the number of non-zero elements in the vector x . Thus, the inclusion relationship
between B and R can be represented with a list of indicator vectors XB = [xn ∈ {0, 1} |Rn | ;∀n ∈
�N �]. Specially, X0 = [0 |Rn | ;∀n ∈ �N �] corresponds to NULL tensor (∅), and X1 = [1 |Rn | ;∀n ∈
�N �] corresponds to R. Given an indicator vector x ∈ {0, 1} |Rn | for a tensor R, the subtensor,
whose nth dimension consists of {a;x[a] = 1,a ∈ Rn }, can be denoted as R ×n x , where “×n” is

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 81. Publication date: February 2023.
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Fig. 2. Pictorial description of Example 3.1. (a) Relation R(user, item, date, #count). (b) 3-way tensor
representation of R, the colored region indicates a subtensor B formed by some colored tuples in relation
R. (c) The list of indicator vectors representation for subtensor B can be denoted as XB = [x1,x2,x3], and

VB =
∏N=3

i=1 | |x i | |1 = 2 ∗ 2 ∗ 2 = 8.

the n-mode product for a tensor and a vector [Kolda and Bader 2009].1 In addition, the subtensor B
ofR can be computed with the corresponding list of indicator vectors XB as:B = R∗(x1◦· · ·◦xN ),
where “∗” is the Hadamard product of tensors and “◦” is the outer product of vectors.

Example 3.1 (Review History). Assume a relation R(user, item, date, #count), its three dimension
attributes are { user, item, date }, the measure attribute C is the number of “count”. Each tuple
t = (u, i,d, c ) in R indicates that the user u visited the item i by date d in total c times.

As a toy example of relation R shown in Figure 2(a), R1 = { Alex, Chris, Dora }, R2 = { A, B, C },
R3 = { Sep-6, Sep-7, Sep-8 }. The colored regions in Figure 2(b) indicate a subtensor B � R, which
is composed of B1 = { Alex, Chris }, B2= { B, C }, B3 = { Sep-6, Sep-8 }. Taking the user dimension
as an example, the indicator vector x1 = [1, 1, 0] because B1 only contains “Alex” and “Chris” of
R1 but no “Dora”; others are the same.

Many computations with respect to B, such as its mass MB and volume VB, are made easier
with R and the list of indicator vectors XB, where XB = [x1,x2,x3] as shown in Figure 2(c).

4 FRAMEWORK AND FORMULATION

In this section, we propose a unified metric, which can be optimized with the gradient-based ap-
proaches, to detect dense blocks, and then we give the formal definition of the hierarchical dense
subtensors detection problem.

4.1 Densest Subtensor Detection Framework

Let R be an N -way tensor and B be a subtensor of R, which actually corresponds to a list of
indicator vectors XB. The mass MB can be computed by

MB = R ×̄ XB = R ×1 x1 · · · ×N xN , (1)

where the full-mode product ×̄ applies the n-mode tensor-vector product to all indicator vec-
tors along the corresponding dimension; similarly, we use the operation ×̄(−n) to denote con-
ducting full-mode product, except the nth mode. Inspired by the density function for dense sub-
graph [Tsourakakis et al. 2013], we propose the following unified density metric.

1Entrywise, the n-mode product between a tensor R and a vector x can be denoted as: (R ×n x )i1 . . .in−1in+1 . . .iN
=∑|Rn |

in=1 t (i1, · · · , iN , c ) · xin
.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 81. Publication date: February 2023.
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Table 3. Summary for Correspondence to the entry-plenum Metric

SX д(x );x = MX h(x );x = SX ϕ density metric

DX logx log x
N

1 arithmetic average mass: ρar i

VX logx logx
1 volume density: ρvol
1
N

geometric average mass: ρдeo

X x · (logC1 · x − 1) Mx ·VxC2 −C1 · logVxC2 1 suspiciousness metric (C1 =
1

MR
,C2 =

1
VR

): ρsusp

Definition 4.1 (Entry-Plenum). Assume X is a list of indicator vectors, and ϕ > 0 is a constant.
Given any two strictly increasing functions д and h, the entry-plenum metric is defined as

fϕ (X;R) �
⎧⎪⎨
⎪
⎩

0 X = X0

д(MX) − ϕ · h(SX) otherwise
, (2)

given the subtensor defined by X over R, MX is its mass and SX is the property formalization
related to its size. SX can be VX, DX, or other forms.

Most popular existing subtensor density measures [Jiang et al. 2015; Shin et al. 2016, 2018, 2017b]
can be subsumed into the above definition as follows. Notice that N is a constant for a given R.

— Let д(x ) = logx ,h(x ) = log x
N
,ϕ = 1 and SX = DX. Then, the metric fϕ=1 (B) = log MB

DB/N
=

log ρar i (B), where ρar i (B) is the arithmetic average mass of B;

— Let д(x ) = h(x ) = logx , SX = VX. If ϕ = 1, then fϕ=1 (B) = log MB

VB
= log ρvol (B), where

ρvol (B) is the volume density of B; and if set ϕ = 1
N

, the metric fϕ= 1
N

(B) = log MB

V
1/N

B

=

log ρдeo (B) where ρдeo (B) is the geometric average mass of B;

— Let д(MX) = MX (log MX

MR
− 1), h(SX) = h(X) = MX

∏N
i=1

| |x i | |1
|Ri | − MR

∑N
i=1 log

| |x i | |1
|Ri | and

ϕ = 1. Then, fϕ=1 (B) = ρsusp (B) corresponds to the suspiciousness for B [Jiang et al. 2015].

Table 3 summarizes the setting and the corresponding of different density metrics, with respect
to the entry-plenum metric. In principle, the above definition is the result of a counterbalancing
of two contrasting terms: the first term д(MX) favors subtensors with the large mass, whereas the
second term −ϕ · h(SX) acts as regularization to penalize large-size block. Thus, the framework
for detecting the densest subtensor can be formalized as the following problem under the entry-
plenum metric.

Problem 1 (Densest (д,h,ϕ)-entry-plenum Subtensor). Given anN -way tensorR, a constant

ϕ > 0, and a pair of increasing functions д and h.

Find: the list of indicator vectors X
∗ such that fϕ (X∗) ≥ fϕ (X) for all feasible X = [xn ∈ {0, 1} |Rn | :

∀n ∈ �N �]. The subtensor derived from X
∗ is referred to be as the Densest (д,h,ϕ)-entry-plenum

Subtensor of the tensor R.

In general, finding the densest block in terms of some measures is NP-hard [Andersen and Chel-
lapilla 2009; Shin et al. 2016], making it infeasible for large datasets. Considering scalability, exist-
ing methods [Charikar 2000; Hooi et al. 2016; Shin et al. 2016, 2017b] resort to a greedy approxi-
mation algorithm, which iteratively selects the local optimal subtensor from candidates based on a
density measure defined in ratio form. For the ρar i metric, they give a 1/2-approximation solution
to the optimal for dense subgraph detection and a 1/N -approximation solution for dense block de-
tection for N -way tensors. However, there is no guarantee of their performance for other density
metrics, which may be arbitrarily bad.

Instead, our framework formulates the densest subtensor detection problem in an optimization
perspective as follows, it utilizes the list of indicator vectors X, which can be treated as a block-
variable, to make the above problem to be solvable through the block-nonlinear Gauss–Seidel (GS)
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method [Grippo and Sciandrone 2000] with convergence guarantee by introducing relaxation. MX

and SX have partial derivatives for each indicator vector under this formalization, and we can use
a gradient-based approach to update X for optimization as long as д and h are differentiable func-
tions (usually satisfied). Moreover, this process is linearly scalable, as our proposed CatchCore
algorithm does in Section 5.6.

4.2 Hierarchical Dense Subtensor Detection and Query

In practice, dense blocks in R may be overlapping, even inclusive, rather than being separate or
flat as many dense-block detection approaches assumed [Jiang et al. 2015; Shin et al. 2016, 2017b];
we can utilize the hierarchical dense subtensors structure to capture them. We present the following
example and definition to manifest the hierarchical structure in multi-aspect data as follows, and
Figure 1(a) also gives a pictorial illustration for such a pattern for the network intrusion case. A
similar phenomenon has been explored in other applications, like event detections [Siddique and
Akhtar 2017] and communities in graphs [Chen and Saad 2010; Leskovec et al. 2008; Yang et al.
2013].

Example 4.2 (Business Advertising Behaviors). During the time for Thanksgiving advertisement
promotion on social media, the whole process may go through the following stages.

Different merchants and supermarkets will start online advertising and promotions about one
month before Thanksgiving; to further broaden the target user scope, they will continue to increase
their promotion efforts and publicity in the days before the holiday and they will continue to in-
crease their promotion efforts and publicity in the days before the holiday, to further broaden the
target user scope; furthermore, such activities and shopping demand may continue post-holiday
and into the week after Black Friday, albeit with less intensity. Consequently, the number of people
buying and merchants selling also changed. Similar phenomena will be staged many times in dif-
ferent shopping festivals throughout the year. Thus, it will form some kind of dense block patterns
among merchants, goods, and time concerning the advertising investment or sales.

Given an N -way tensor R, we want to find the dense subtensors in several hierarchies, each
comprising a set of different entries. We use ρ (B) to denote the density of subtensor B; the dense

subtensor at the kth-hierarchy is denoted as Bk . In order to find some meaningful patterns and to
avoid getting identical subtensors crossing distinct hierarchies, we have the following definition.
Given the tensor B0 � R and a constant K ∈ N+,

Definition 4.3 (Hierarchical Dense Subtensors (HDS-tensors)). For any k ∈ �K�, the subtensors

Bk−1 and Bk are in two adjacent hierarchies, it is required that,

(i) density: the densities should be significantly different from each other, ρ (Bk ) ≥ η · ρ (Bk−1)
for some η > 1.

(ii) structure: subtensors in higher hierarchies are more “close-knit”, leading to a multi-layer

dense core, Bk � Bk−1, subjects to, ∀n ∈ �N �, ∅ � Bk
n ⊆ Bk−1

n and ∃i ∈ �N �, Bk
i � Bk−1

i .
Thus, all subtensors in K hierarchies consist of Hierarchical Dense Subtensors.

Noteworthy is the fact that it is not feasible to recursively apply off-the-shelf dense subtensor
detection methods to find HDS-tensors because they do not consider the relationship among dif-
ferent blocks, even if possible, it might return trivial results (e.g., identical dense subtensors across
distinct hierarchies), and it is also unclear how to design the overall objective function to be opti-
mized by the recursive heuristic.

Formally, using the list of indicator vectors X
k to denote Bk —the subtensor of the kth hierarchy,

the HDS-tensors detection problem is formalized as follows.
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Problem 2 (HDS-tensors Detection). Given: (1) an input N -way tensor R, (2) the expected

density ratio between two adjacent hierarchies η > 1,2 and (3) the maximum number of hierarchies

K ∈ N+.

Find: a set of the list of indicator vectors {X1, . . . ,Xr }, r ≤ K for hierarchical dense subtensors in

r significant hierarchies, satisfying that ρ (Xr ) ≥ η · ρ (Xr−1) ≥ · · · ≥ ηr−1 · ρ (X1), and X
r � X

r−1 �
· · · � X

1.

Besides, we might also be interested in finding those HDS-tensors containing special items (with
specific values for some dimensions of the tensor R) in some applications. That is, we can detect
the dense patterns containing some specific query objects, such as the traffic jam on some parts of
the road net or periods, collaboration communities of some specific author, and behaviors of some
pre-known suspects, which is similar to the semi-supervised cases. Therefore, we formally define
such a problem for pattern query as follows.

Problem 3 (Query-specific HDS-tensors Detection). Given: (1) an input N -way tensor R,

(2) the expected density ratio between two adjacent hierarchies η > 1, (3) the maximum number of

hierarchiesK ∈ N+, and (4) a set of the query itemsQ = {(q,aq )} such that the value of qth dimension

is aq in R.

Find: a set of the list of indicator vectors, {X1, . . . ,Xr }, r ≤ K , for the dense subtensors in r
significant hierarchies such that the query items Q are contained in all the results, and also satisfy

the properties of HDS-tensors.

In addition, we define a three-level coordinate (k,n, i ) to index the list of indicator vectors for
convenience, i.e., X(k,n,i ) denotes the ith scalar element xi of the nth indicator vector xn in X

k .

Also, X(k, ·, ·) and X(k,n, ·) represent X
k and indicator vector xn of X

k , respectively.

5 PROPOSED METHOD

In this section, we first give the optimization formulation for the dense subtensor detection and
extend it to HDS-tensors. Then, we illustrate our proposed method, CatchCore, which is an
optimization-based algorithm to solve the problem. Moreover, we design to measure the quality
of detection results and perform model selection under the MDL principle. We finally provide an
analysis of the properties of CatchCore.

5.1 Optimization Formulation for Dense Subtensor Detection

Here, we provide an interpretable instantiation of the entry-plenum metric based on the volume

density. With the list of indicator vectors XB of the subtensor B, the density is represented as

ρB =
MB

VB
=

MB∏
x ∈XB

| |x | |1 , where the VB is computed as the product of the size of the indicator

vector for each tensor mode, i.e.,
∏

x ∈XB
| |x | |1, which equals the total number of possible tuples

and may include some zeros.
To find the dense subtensors, if we directly maximize the density measure ρB, however, it will

lead to some trivial solutions, being the entries with maximum measure value C or any single
entry in binary-valued tensor; while maximizing the vector-based subtensor mass defined with
Equation (1) by optimizing XB will also engender another trivial result—the R itself, since no size
or volume limitation is taken into account.

2More generally, we can also set different density ratios between hierarchies rather than the fixed one parameter for specific

concern.
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Intuitively, we need to maximize the mass of entries while minimizing the mass of missing
entries in the block. Therefore, we propose the optimization goal as max

X�[x 1, ...,x N ]
F (X), where

F (X) = (1 + p)MX − p
∏

x n ∈X

| |xn | |1 , s.t. xn ∈ {0, 1} |Rn |, ∀n ∈ �N �, (3)

where MX = R ×̄X and p > 0 is the penalty parameter.
The rationale behind the above definition is that each existing entry t in the resultant subtensor

contributes t[C] as itself to F (X), while each zero-valued entry t̃ is penalized by a value of p
(i.e., t̃[C] = 0 − p = −p). In this manner, the objective function maximizes the total mass in
the resultant subtensor while minimizing the total penalty of the missing entries. Moreover, the
objective function corresponds to the (д,h,ϕ)-entry-plenum metric under the setting that д(x ) =
h(x ) = x , ϕ =

p

1+p
, and SX = VX .

Generally, the optimization of the objective function F (·) is NP-hard due to the combinatorial
nature stemming from the binary constraints in Equation (3). So, we relax these constraints from
a 0− 1 integer programming (IP) problem to a polynomial-time solvable linear programming

(LP) problem, that is, 0
|Rn | ≤ xn ≤ 1

|Rn | . To eliminate the effect of the limited iterations or some
possible unstable cases, only those attributes with a value of 1 in xn or the rounded xn will be
selected; besides, they will be fully converged in most cases.

5.2 Hierarchical Dense Subtensors (HDS-tensors) Detection

Based on the formulation for finding a single dense subtensor, intuitively, we can maximize the
objective function in Equation (3) for each hierarchy to detect K hierarchical dense subtensors,
i.e., to maximize

∑K
k=1 F (Xk ), and also consider the aforementioned prerequisites of HDS-tensors.

Specifically, the density (i) constraint is represented as ρ
Xk+1 ≥ η · ρ

Xk for the kth hierarchy with a

density increase ratioη > 1; and for the structure (ii) requirement (Bk+1 � Bk � Bk−1), we impose
additional constraints on indicator vectors to prevent identical results, as X(k+1,n, ·) ≤ X(k,n, ·) ≤
X(k−1,n, ·),∀n ∈ �N �, by setting X

0 = X1 and X
K+1 = X0.

Consequently, the overall optimization formulation is as follows:

max
X1, ...,XK

K∑
k=1

F (Xk )

s.t. ρ
Xh+1 ≥ η · ρ

Xh , X(h+1,n, ·) ≤ X(h,n, ·) ≤ X(h−1,n, ·) . ∀h ∈ �K�; ∀n ∈ �N � .
(4)

Obviously, this bound-constrained multi-variable nonlinear programming (BMV-NLP)

optimization problem is non-convex and numerically intractable to solve. So, we take the fol-
lowing relaxation for the constraints to make it a regularization term in the objective function.
Let dk−1 = η · ρ

Xk−1 , which is a constant w.r.t. X
k , the corresponding regularization term can be

written as G (Xk ) = R ×̄X
k − dk−1∏N

n=1
���
���X(k,n, ·)

���
���1, being also the entry-plenum form. Thus, the

objective function with relaxation constraints for HDS-tensors detection becomes

max
X1, ...,XK

K∑
k=1

F (Xk ) + λ
K∑

j=2

G (Xj )

s.t. X(h+1,n, ·) ≤ X(h,n, ·) ≤ X(h−1,n, ·) . ∀h ∈ �K�; ∀n ∈ �N �,
(5)

where the parameter λ controls the importance of the regularization term. Thus, for k ≥ 2, we
have

F (Xk ) = (1 + p + λ)R ×̄X
k − (p + λdk−1)

N∏
n=1

���
���X(k,n, ·)

���
���1 .
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ALGORITHM 1: CatchCore for HDS-tensors detection

Require: (1) the N -way tensor: R (2) the maximum number of hierarchies: K
(3) the penalty value for the missing entry: p (4) the density ratio between two adjacent

hierarchies: η (5) the regularization parameter: λ (6) the maximum number of iterations: tmax

Ensure: The dense subtensors indicator vector collections: {X1, · · · ,Xr }.
1: initialize X

1, · · · ,XK as X
init
(k,n, ·)

2: t ← 1, r ← 1
3: while t ≤ tmax and Equation (9) is not satisfied do � Stop criteria

� Gauss-Seidel method for updating

4: for k ← 1 . . .K do � For the k-th hierarchy

5: for n ← 1 . . .N do � For the n-th dimension

6: xk
n ← OneWayOpt (xk

n ) � Block coordinate descent

7: update X
k

8: t ← t + 1
9: while r ≤ K do � Select significant subtensors

10: S = {X(r,n, ·) ; max X(r,n, ·) < 1, ∀n ∈ �N �}
11: if S � ∅ then

12: break � Only keep significantly dense subtensors

13: else:
14: r ← r + 1
15: return The resultant r indicator vector collections {X1, · · · ,Xr }.

Then, the objective function in Equation (5) can be rewritten as F (X1) +
∑K

k=2 F (Xk ). We can

see that in F , a larger penalty parameter is imposed on the missing entries of the kth hierarchy
compared with that of the (k − 1)-th hierarchy (k ≥ 2), aiming at engaging the density diversity
for different hierarchies.

5.3 Optimization Algorithms: CatchCore

In this section, we first explain the optimization techniques and then present the algorithm Catch-
Core to solve the problem. Algorithm 1 summarizes the complete structure of CatchCore.

When using the LP methods to solve the BMV-NLP problem, Equation (5) becomes a non-convex
and higher-order bounded function with respect to each list of indicator vectors X(k, ·, ·) , it allows us
to apply the alternative update method by fixing all variables for other hierarchies to be constants
except for the current list in each iteration. This strategy can also be used to update each indicator
vector X(k,n, ·) for each hierarchy.

Based on the structure constraint, for any dimension n ∈ �N �, the feasible solution X(k,n, ·) is
bounded by the indicator vectors X(k−1,n, ·) and X(k+1,n, ·) from the two adjacent hierarchies in the

high-dimensional space. We relax these constraints to 0
|Rn | ≤ X(k,n, ·) ≤ X(k−1,n, ·) for optimizing.

Thus, we can obtain X
1,X2, · · · ,XK in order. That is, we first get X

1 with the constraints {0 |Rn | ≤
X(1,n, ·) ≤ 1

|Rn |,∀n ∈ �N �} by ignoring the constraints of other variables in other X
k s, then we

obtain X
2 based on the result at the first step under the constraints {0 |Rn | ≤ X(2,n, ·) ≤ X(1,n, ·),∀n ∈

�N �} and also ignore other constraints. In this way, we can solve the K dense subtensors detection
subproblems hierarchy-by-hierarchy.

Technically, we adopt the trust-region approach [Coleman and Li 1996] to solve each nonlinear
box-constrained programming subproblem. We rewrite the optimization problem in Equation (5)
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as min
X1, ...,XK

f (X1, . . . ,XK ), where

f (X1, . . . ,XK ) = − (1 + p)R ×̄X(1, ·, ·) + p
N∏

n=1

���
���X(1,n, ·)

���
���1 − (1 + p + λ)

K∑
k=2

R ×̄X(k, ·, ·)

+

K∑
k=2

(p + λdk−1)
N∏

n=1

���
���X(k,n, ·)

���
���1

s.t. X(h+1,n, ·) ≤ X(h,n, ·) ≤ X(h−1,n, ·) . ∀h ∈ �K�; ∀n ∈ �N � .

(6)

Specifically, we use the alternative projected gradient descent method [Lin 2007; Lin and Moré
1999], which is simple and efficient for solving the optimization problem. For any dimension n, we
denote the gradient of Equation (1) with respect to xn as

∇x n
MB = R ×̄(−n) XB = R ×1 x1 · · · ×(n−1) x (n−1) ×(n+1) x (n+1) · · · ×N xN .

Then, the gradient of f (·) with respect to x1
n (X(1,n, ·)) and xk

n (X(k≥2,n, ·)) are

∇x 1
n
f = −(1 + p)∇x 1

n
MX1 + p

∏
x n ∈X1/ {x 1

n }

| |xn | |1 1,

∇x k
n
f = −(1 + p + λ)∇x k

n
M

Xk + (p + λdk−1)
∏

x n ∈Xk / {x k
n }

| |xn | |1 1,
(7)

where 1 is an all-ones vector (i.e., the same size as x1
n and xk

n ). Let xn be the current iterator vector
of any kth hierarchy in the projected gradient approach, the new iterator is given by the update
rule x̃n = P (xn −α∇x n

f ). Here, the operator P (·) projects the vector back to the bounded feasible
region (as the above-mentioned) [Bertsekas 1997], −∇x n

f is the gradient-related search direction,
and α is a step size computed, e.g., utilizing the Armijo step size strategy. In the case of Armijo’s
rule line search, a good step size α is chosen until the following condition is satisfied

f (·,Xk
x n→x̃ n

, ·) − f (·,Xk , ·) ≤ σ · (∇x n
f )T (x̃n − xn ), (8)

where X
k
x n→x̃ n

means only replacing the indicator vector xn with the updated version x̃n in X
k ,

and a common choice of the parameter σ (0 < σ < 1) is 0.01. Thus, we can update each indicator
vector xn for the current kth-hierarchy alternatively.

Searching for the step size α is a time-consuming process. We use a more flexible line search [Lin
and Moré 1999] method to decrease the number of checks for Equation (8). The OneWayOpt
described in Algorithm 2 is used to update one indicator vector xn for X

k . Specifically, let α denote
the step size for updating xn ; we assume it is similar to the step size for updating x̃n . To update x̃n ,
we use α as the initial guess and then either increase or decrease it with a scale factor β (0 < β < 1)
until finding the best step size satisfying Equation (8). The core steps for efficiently searching α
correspond to Lines 7–10, and we use β = 1/10 in our article.

Therefore, we propose the CatchCore algorithm to solve the programming optimization prob-
lem in Equation (6). First, we use the rules to initialize the list of indicator vectors by selecting
the slices R(n,an ) (i.e., X

init
(k,n,i )

) with 0.5 in the 1st hierarchy, and 0.01 for the others (2 ≤ k ≤ K ).

In this way, we can effectively avoid some trivial results. To make the solution to be close to the
stationary point regarding convergence, we apply the following common condition as a stop cri-
terion for the bounded-constrained optimization approach as well as the limitation for the total
number of iterations, tmax.

����
����

{
∇P

x k
n

f ;∀n, k
}����
����2
≤ ϵ

�����

�����

{
∇P

X
init
(k,n, ·)

f ;∀n, k
}�����
�����2
, (9)
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ALGORITHM 2: OneWayOpt for updating one indicator vector

Require: (1) the indicator vector xn to be updated for X
k (2) the ratio of decreasing the step size:

β ∈ (0, 1) (3) the linear search parameter: σ ∈ (0, 1)
Ensure: the newly updated indicator vector x̃n .

1: compute the gradient ∇x n
f as the Equation (7).

2: compute the objective function f (·,Xk , ·) with xn in the Equation (6)
3: initial α ← 1 � Step size for updating

4: while not satisfied the Armijo’s condition do

5: x̃n = P (xn − α∇x n
f ) � Obtain the new xn

6: compute the objective function f (·,Xk
x n→x̃ n

, ·) with x̃n

7: adjust the step size α with β based on the condition in Equation (8).

8: return the final x̃n .

where ∇P

x k
n

f is the element-wise projected gradient. For the ith element, it is defined as

(∇P

x k
n

f )i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

min(0, (∇P

x k
n

f )i ) if X(k,n,i ) = X(k+1,n,i ),

(∇P

x k
n

f )i if X(k+1,n,i ) < X(k,n,i ) < X(k−1,n,i ),

max(0, (∇P

x k
n

f )i ) if X(k,n,i ) = X(k−1,n,i ) .

Then, CatchCore calls OneWayOpt to alternatively update the indicator vector corresponding
to each dimension and hierarchy, iteratively. In the final, we only select those significantly dense
subtensors to return (Lines 9–14), i.e., the top r of K hierarchies.

5.4 Query-specified HDS-tensors Detection

Query problem 3 defines a special case for the HDS-tensors detection where the query item set Q
should be included in each resultant subtensor, that is, xk

q [aq] = 1, ∀1 ≤ k ≤ K , and (q,aq ) ∈ Q
in the indicator vector paradigm. However, the optimization goal in Equation (6) becomes a mixed

integer programming problem with this treatment, which typically requires an exhaustive search
to solve. To utilize the same optimization framework for Equation (6), we relax the integer combi-
natorial programming problem to be a small search-range by setting these entities to a number c̄
slightly less than 1, like c̄ = 0.9. So, the lower bound for xK+1

q becomes

xK+1
q =

⎧⎪⎨
⎪
⎩

c̄ if (q,aq ) ∈ Q,
0 otherwise.

We reuse the optimization algorithms described in Section 5.3 to solve the query problem while
forcing the indicator vector to satisfy the above constraints during each update iteration, which
will lead to the resultant subtensors having to contain those target query items.

Furthermore, it is worth noting that using the tensor decomposition [Kolda and Bader 2009]
result, e.g., CP decomposition, as initialization for the indicator vector can speed up our algorithm
due to being closer to the local optimal.

5.5 Parameter Evaluation and Model Selection

Regarding the dense subtensors, the penalty value p controls the lowest density of the missing
entries, and the ratio parameter η affects the density-diversity and the number of hierarchies in
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the final result. It is challenging to appropriately set those parameters or evaluate the quality of
detection results of some parameter configurations, especially in unsupervised applications.

We propose to measure the quality of detection results of different parameter settings based
on the Minimum Description Length (MDL) [Adriaans and Vitanyi 2009; Rissanen 1978] where
the shortest description of the data is the best model. MDL methods learn through a data com-
pression perspective and are sometimes described as mathematical applications of Occam’s razor.
In such a principled manner, we compute the number of bits needed to encode the tensor R with
the detected hierarchical dense subtensors; and select the best model (parameters) to achieve the
shortest code length, where the shorter the MDL, the better the model. Intuitively, the fewer miss-
ing entries and the more accurate when detecting different hierarchies, leading to the fewer bits
needed to encode R in a lossless compression employing the characterization.

For the indicator vector X(k,n, ·) (k ∈ �K�, n ∈ �N �) we can adopt the Huffman or arithmetic
coding schema to encode the binary string, which formally can be viewed as a sequence of real-
izations of a binomial random variable X . Considering X(k,n, ·) ≤ X(k−1,n, ·) , we can only focus on

the overlapping part xk
n = {X(k,n,i ) ; X(k−1,n,i ) = 1,∀i ∈ �|R|n�} to avoid the redundant encoding

of 0s. We denote the entropy of the indicator vector x as

H (x ) = −
∑

q∈{0,1}
P (X = q) log P (X = q),

where P (X = q) = nq/ | |x | |1 and nq is the number of q in x .

The description length of the list of indicator vectors X
k is

L(Xk ) =
N∑

n=1

(
log∗ ���

���X(k,n, ·)
���
���1 +

���
���X(k−1,n, ·)

���
���1 · H (xk

n )
)
,

where log∗ x is the universal code length for an integer x [Rissanen 1983].

Assuming X
K+1 = X0, for the dense subtensor Bk defined by X

k , we only need to encode the

entries in B
k
= Bk − Bk+1 due to Bk+1 � Bk , based on some probability distribution model.

For the tuple t ∈ B
k

, specifically, if t[C] ∈ {0, 1}, t is sampled from the binomial distribution;
and if t[C] ∈ N≥0, we instead model the data by using the Poisson distribution [Jiang et al. 2015]

parameterized by the density of B
k

, i.e., ρ
B

k . Therefore, the code length for encoding B
k

is

L(B
k

) = −
∑

q∈{t [C];t ∈B
k

}

nq · log P (X = q) +Cpar a ,

where P (X = q) is the probability of q in the probability distribution function P, and Cpar a is for
encoding the parameters of P, e.g., the mean in a Poisson distribution.

As for the residual part R = R −B1, we use Huffman coding to encode its entries, considering
the sparsity and discrete properties, and the code length is denoted as Lϵ .

Putting all these parts together, we can write the total code length for representing the tensor
R with the resultant list of indicator vectors for K hierarchies as

L(R; X
1, . . . ,XK ) = log∗ K +

N∑
n=1

log∗ |Rn | +
K∑

k=1

L(Xk ) + L(B̄
k

) + Lϵ . (10)

To get a better parameter setting, we can perform a grid search over the parameter space heuristi-
cally and pick the configuration that minimizes the MDL cost. In the experiment, we demonstrated
that the parameters determined by the MDL principle lead to the optimal quality for detecting the
HDS-tensors while the search space is also limited.
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5.6 Algorithm Analysis

Here, we provide the convergence analysis and time-space complexity of CatchCore.
Lemma 5.1 states the convergence properties of the gradient method for CatchCore.

Lemma 5.1 (Convergence). CatchCore algorithm converges to a critical point (Local Optimal-

ity).

Proof. Considering the subtensor detection as Equation (3) defines, the alternative updating
steps in CatchCore come down to the block nonlinear Gauss–Seidel method.

Based on the convergence conclusion in [Grippo and Sciandrone 2000] for the quasi-convex ob-
jective function, the indicator vectors in each dimension are bounded by a closed convex set. The
projected gradient algorithm that uses the Armijo procedure converges to a stationary point [Cala-
mai and Moré 1987], where the Armijo-type line search (LS) adopted in Algorithm 2 generates
a sequence of points for any dimension, and there exists at least one limit point x̃ , we have
(∇x f )T (x̃ − x ) ≥ 0, i.e., x̃ is a critical (stationary) point. This convergence result is still satisfied
without any convexity assumption on the objective function.

To detect hierarchical subtensors, CatchCore updates indicator vectors hierarchy-by-
hierarchy, and the convergence property is maintained since the subproblem for the subtensor
detection in one hierarchy is the same as in Equation (3). Therefore, the CatchCore algorithm
converges to a critical point for each limit point. �

Theorem 5.2 states the time complexity of the CatchCore algorithm, which is linear with K , N ,
and nnz (R)—the number of non-zero entries in R. The space complexity is given in Theorem 5.3.

Theorem 5.2 (Worst-case Time Complexity). Let tals be the number of iterations for Armoji’s

line search used in the OneWayOpt Algorithm for updating any indicator vector. Then, the worst-case

time complexity of the CatchCore Algorithm is O (K · N · tmax · tals · (nnz (R) + c · DR)).

Proof. Regarding the computational complexity for M
Xk and ∇x n

f in OneWayOpt Algo-
rithm 2, they rely on the full-mode product ×̄ or ×̄(−n) , which takes at most O (nnz (R)) by
conducting an element-wise n-mode product for tensor and all vectors. Computing the norm of
indicator vectors takes O (

∑N
n=1 |Rn |), which is included in the objective function f , vector gradi-

ent of f , and stop-criteria. Thus, for tals searching iterations, the time complexity of OneWayOpt
is O (tals · (nnz (R) + c · DR)).

The alternative updating for all variables in the CatchCore algorithm runs tmax times at most,
so there will beK ·N ·tmax iterations to call OneWayOpt in total. To keep the significant subtensors,
all indicator vectors in each of the K hierarchies will be checked at most once, for a total of O (K ·∑N

n=1 |Rn |) times. Hence, the worst-case time complexity of the CatchCore algorithm isO (K ·N ·
tmax · tals · (nnz (R) + c · DR)). �

Theorem 5.3 (Memory Reqirements). The amount of memory space required by CatchCore

is

O (nnz (R) + 2K · DR). (11)

Proof. CatchCore stores the tensor R, the indicator vectors and gradient vectors when
computing M

Xk and ∇x k
n
f for a list of indicator vectors X

k . So, the memory requirement is

O (nnz (R) + 2K · DR). �

Parameter Analysis: For the maximum number of significant hierarchiesKmax = logη ( max(R)
ρR

),

where max(R) is the maximum value of the measure attributes of R. In practice, we have the
following observations, which ensure the efficiency of CatchCore,
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Table 4. Summary of Real-world Datasets

Name Volume card (R) nnz(R)
Ratings: users × items × timestamps × rating→ #reviews

Android 1.32M × 61.3K × 1.28K × 5 1.38M 2.23M
BeerAdvocate 26.5K × 50.8K × 1,472 × 1 78.7K 1.07M
StackOverflow 545K × 96.7K × 1,154 × 1 643K 1.30M

Social network: users × users × timestamps→ #interactions

DBLP 1.31M × 1.31M × 72 2.63M 18.9M
YouTube 3.22M × 3.22M × 203 6.45M 18.5M

TCP dumps: IPs × IPs × timestamps→ #connections

DARPA 9.48K × 23.4K × 46.6K 79.5K 522K

TCP dumps: protocol × service × flag × · · · → #connections

AirForce 3 × 70 × 11 × 7.20K × 21.5K × 512 × 512 39.7K 648K

◦ nnz (R) � DR, and K � Kmax, i.e., there are only a few significant hierarchies;
◦ t < tmax, i.e., early stopping for iterations;
◦ a small tals, i.e., few iterations for searching the step size.

The dimension-update (Line 5) could be solved separately, a situation suitable for a parallel envi-
ronment.

6 EXPERIMENTS

We design experiments to answer the following questions:
— Q1. Accuracy: How accurately does CatchCore detect HDS-tensors in synthetic and real-

world datasets? Does the MDL evaluation select the optimal parameters?
— Q2. Pattern detection and anomaly detection: What patterns does CatchCore detect

in real-world data? What is the behavior of the detected anomalies?
— Q3. Query-based pattern: How about the behavior of specific items? Can CatchCore

capture other interesting patterns in terms of query-specific HDS-tensors?
— Q4. Scalability: Does the CatchCore scale linearly with all aspects of data?

6.1 Experimental Settings

Baselines: We selected several state-of-the-art methods for dense-block detection as the baselines,
including D-Cube [Shin et al. 2017b], M-Zoom [Shin et al. 2016], CrossSpot [Jiang et al. 2015],
and CPD [Kolda and Bader 2009]. In all experiments, a sparse tensor format was used for efficient
memory usage, and the ρar i and ρдeo were used for D-Cube and M-Zoom (report the best result);
we used a variant of CrossSpot which maximizes the same density metrics and used the CPD
result for seed selection as did in [Shin et al. 2016].

Data: Table 4 summarizes the real-world datasets in our experiments. In the Rating category,
data are 4-way tensors (user, item, timestamp, rating), where the entry values are the number of
reviews. In Social network, data are 3-way tensors (user, user, timestamps), where the entry values
are the number of interactions (co-authorship/favorite), and its first two attributes refer to the
same set of users. DARPA is the TCP dumps represented with a 3-way tensor (source IP, destination

IP, timestamps), where the entry values are the number of connections between two IP addresses
(hosts); 60% of records are labeled as anomalous (in total 89 different sorts of attacks), which are
dominated by nine types of attacks, such as Neptune, Smurf, Satan, and so on. AirForce is also a
network intrusion dataset for a typical U.S. Air Force LAN, which is represented as a 7-way tensor
(protocol, service, src_bytes, dst_bytes, flag, host_count, src_count), and it contains 22 types of attacks.
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The TCP dumps datasets contain the label of each record, including normal or different types of
attack. Timestamps are in minutes for DARPA, in dates for Ratings and YouTube, and in years for
DBLP.

6.2 Q1. Accuracy

We compare how accurately each method detects the injected dense subtensors in the synthetic
and dense patterns in real-world datasets.

Fig. 3. Injected dense blocks de-

tection. CatchCore outperforms com-
petitors for detecting injected blocks in
synthetic data, it achieves lower (10×
less density) detection bound than
others.

6.2.1 Injected Dense Blocks Detection.

Single dense block. We randomly and uniformly generated
a 5K × 5K × 2K 3-way tensor R with a density of 3E − 6. Into
R, one 200 × 300 × 100 block is injected with distinct den-
sity, for testing the detection bound of each method. Figure 3
demonstrated that CatchCore effectively detects blocks as
low as a tenth of the density that the best baselines detect. In
a real scenario, the synchronized behavior of fraudsters often
use many resources, including fake accounts, IP addresses,
and time, to conduct the same fraud to achieve the “economy
of scale”; thus, the lower detection density for dense blocks
means that our method can spot such fraudsters with less ad-
versarial effort and detect they as early as possible. The result
of real-world data is omitted since CatchCore had similar
behavior to other competitors.

Hierarchical dense blocks. We injected K subtensors with
different sizes and densities into the BeerAdvocate and a syn-
thetic tensor R in a hierarchical manner.

Tables 5 and 6 list the detection results, where H1 is the
densest or the first subtensor detected by the methods, and density (the order of detection) de-
creases (increases) fromH1 toH3. The information about the injected blocks is given at the bottom
of the tables.

As we can see, in both the BeerAdvocate and synthetic cases, CatchCore can detect all injected
subtensors in various hierarchies, sizes, and densities. It consistently outperforms other baselines,
which fail to capture them accurately or miss at least one block. D-Cube and M-Zoom have similar
accuracy except for some special cases as highlighted; they cannot identify the structure among
dense blocks, resulting in missing some of the sparsest or densest injected blocks or being over-
whelmed by some large volume blocks. CrossSpot and CPD also do not find those hierarchical
dense subtensors accurately.

Moreover, CatchCore can accurately detect those non-overlapping blocks and catch higher
density subtensors for dense blocks with some blank spaces or hollow. We also verified such cases
via different injection strategies.

6.2.2 Dense Blocks Detection in Real World Datasets. We apply CatchCore to various real-
world datasets and report the volume density ρvol instead of mass to avoid trivial results and
reflects the fillrate in the blocks for 0-1 tensors. Those blocks with a higher density contain inter-
esting patterns with a high probability.

Figure 1(c) and Figure 4 show the densities of the top four densest blocks found by different
methods for the DBLP, YouTube, StackOverflow, and Android datasets. As the figures show, for
DBLP and YouTube data, CatchCore spots the denser blocks and consistently outperforms the
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Fig. 4. The subtensors detected by CatchCore for the real-world datasets achieve higher densities.

In each sub-figure, points represent the density of kth of the top 4 blocks found by the different methods.
CatchCore outperforms the competitors, especially for the YouTube dataset, which contains suspicious
behaviors that users in the top 2 blocks create abnormally large friendship connections with others within
an hour.

competitors for all blocks; it also achieves a similar best result for StackOverflow as CrossSpot.
The density of the densest blocks is 1.0 for YouTube and StackOverflow, which means that they
are fully populated and correspond to cohesive connections. As Figure 4(c) for Android shows,
CatchCore captures the densest block with a higher density than the result from other methods;
except for the first block, CPD and CrossSpot had the same performance, which means that
CrossSpot did not get an improvement over CPD, and were better than other methods. This
phenomenon comes from the fact that the results obtained based on the other metrics (like ρar i )
are not necessarily optimal or even good at the ρvol density metric, for which the results of
those methods adopting greedy approximation might be arbitrarily bad. Even if their densities
are already larger than those of taking ρдeo metric, the dense blocks detected by M-Zoom and
D-Cube still contain more zeros leading to a small density value of ρvol but the highest values
under ρar i based on our scrutinization.

6.2.3 MDL-based Evaluation. We evaluate the utility of our MDL criteria for measuring the
quality of hierarchies returned by CatchCore under different parameter configurations.

In this experiment, we used the BeerAdvocate data with three hierarchical injected dense blocks,
i.e., the second case with K = 3 in Table 5. We computed the MDL cost of the detection result by
varying a pair of parameters, p and η. As we can see from the results in Figure 5(a), the optimal
hierarchies achieve the shortest MDL with respect to p and η, thus, our designed MDL measure
indeed aids to select the best model (parameter configuration). In addition, our model is insensitive
to parameters to some extent; that is, it can obtain optimal results for a wide range of parameters.

6.3 Q2. Anomaly Detection and Community Pattern

6.3.1 Anomaly Detection. CatchCore detected network intrusion in TCP dumps with high
accuracy and identified attack patterns for the DARPA and AirForce datasets, where each intrusion
connection is labeled.

Table 7 compares the F-score of the top 5 densest blocks detected by each method. CatchCore
outperformed competitors for DARPA data and had a comparable performance to M-Zoom for
AirForce data. CPD had the weakest results due to including more false-positive results by only
relying on the tensor decomposition components; CrossSpot might achieve more refined and
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Fig. 5. (a) The optimal hierarchies achieve the shortest MDL w.r.t. the parameters p and η. CatchCore can
obtain optimal hierarchical dense subtensors for a wide range of parameters to some extent. (b) Hierarchical
network intrusion behavior between a pair of IPs on June 18, 1998, in DARPA dataset.

Table 7. CatchCore Identifies Network Attacks from the Real-world TCP Dumps Datasets with the
Best or Comparable Performance in F-score (Left)

DARPA AirForce

CPD 0.167 0.785
CrossSpot 0.822 0.785
M-Zoom 0.826 0.906
D-Cube 0.856 0.942

CatchCore 0.877 0.902

H Subtensor Shape Anomaly Ratio

1 1 × 1 × 96 100%
2 1 × 1 × 100 100%
3 1 × 1 × 274 100%

4 16 × 5 × 24.7K 87.0%
5 171 × 15 × 29.2K 85.4%

It spots different hierarchical dense blocks with interesting patterns for DARPA (Right).

better results via a local search on the basis of CPD’s results. M-Zoom and D-Cube always had
better performance than the previous two methods, since they directly detect the densest blocks,
but they may have missed some items on the periphery of the densest blocks, resulting in poor
performance. Our approach can find more subtle structures within those results and sometimes
achieve a better result if such characters are significant, like in DARPA.

For the DARPA dataset, CatchCore also spotted the hierarchical behavior pattern of the
Neptune attack in H1–H3, which is composed of the connections at different times for a pair
of IPs; Figure 5(b) shows the attack pattern snippet that occurred from 7 a.m. to 8 a.m. on June
18, 1998. The densities (attack intensities) vary greatly over different hierarchies, i.e., the density
in H1 is about 5K , while it is only about 3K for the remaining parts in H3; the intense attacks
represented cyclic patterns in 5 minutes. These attacks had various levels of intrusion intensity
and burst activity, resulting in discriminatively dense patterns over different time periods. For the
AirForce dataset, although the hierarchical structure of all subtensors includes almost malicious
connections (with a recall of 98%) at the cost of containing some false-positive samples, Catch-
Core achieves comparable performance to baselines, while D-Cube is the best one.

Provided the labeled AirForce dataset, we formalized the anomaly detection here as a binary
classification problem (the normal vs. attack) and compared to some neural network models, i.e.,
the unsupervised outlier/anomaly models, including AutoEncoder (AE) [Sakurada and Yairi
2014], Variational AutoEncoder (VAE) [Kingma and Welling 2014], β-VAE [Burgess et al. 2018],
and DeepSVDD [Ruff et al. 2018]; MLP as a supervised classification model. We ignored the
comparison of DARPA with any GNN models since few of them can deal with the edge attributes
(i.e., timestamps) and mixed edge-labels.
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Table 8. Performance of Unsupervised and Supervised Neural Network
Models for Anomaly Detection Over AirForce

VAE β-VAE DeepSVDD AutoEncoder MLP

F1 score 0.419 0.541 0.575 0.667 0.996

We utilized the implementations in the popular Anomaly Detection library PyOD [Zhao et al.
2019] and used 70% data for training and the remaining 30% as the testing set. The parameter
settings are listed as follows (the contamination parameter is set to be the proportion of the normal
to make it in the range [0.0.5], if it is needed).

— VAE: the dimensions of hidden neurons are 32 and 16;
— β-VAE: coefficient of β-VAE regime as 2.5 and the maximum capacity of a loss bottleneck as

15.0, others keep the same as VAE;
— AutoEncoder: the dimensions of hidden neurons are 64 and 32;
— DeepSVDD: it trains an AutoEncoder while minimizing the volume of a hypersphere that

encloses the network representations of the data, forcing the network to extract the common
factors of variation. The dimensions of hidden neurons are the same as the AutoEncoder and
with a dropout rate of 0.1;

— MLP: three layers with 32 hidden neurons, the regularization term as 1E − 5.

We optimize by Adam optimizer with the learning rate of 1E − 4 with a batch size of 128.
Table 8 shows the F1 score of those neural network based models. The performances of those

unsupervised models are significantly worse than the results of dense subtensor detection meth-
ods in Table 7; they are usually sensitive to the model parameters and the variances are also large,
e.g., the highest score of β-VAE is 0.663 and the lowest is just 0.418. Surprisingly, the MLP model
achieves the best performance, and even significant gain compared with Table 7 after using some
label information. In contrast, dense subtensor detection methods can easily handle both the re-
lational (i.e., graph or multi-correlation tensor) and tabular data in an unsupervised manner, and
find some interesting and unexpected behavior patterns, which may be beyond the ability of some
deep models.

CatchCore also discerned denser and more anomalous subtensors. For the YouTube dataset
in Figure 4(a), these dense blocks are missed by other baselines. In particular, the block with the
highest density (H1) represents one user who became friends with 904 different users in one day,
while the other one in H2 also created connections with 475 users at the same time. So, these two
users are more likely to be fraudulent or bot accounts. The densest block in the StackOverflow
data shows one user marking 257 posts as their favorite in one day, which is also most likely to be
an anomaly.

Compared to the baselines, CatchCore detects holistically optimal multi-layer dense subten-
sors while the densest one is only part of it, which is not our direct target. Besides, the volume
density metric tends to be non-empty blocks and may result in some locally dense one-dimensional
slices in the highest density layer, which may not be the densest slices within the whole tensor.
Using other density metrics could eliminate this issue.

6.3.2 Evolving Community Pattern. Figure 1(b) and (c) shows the evolving co-authorship struc-
ture of dense subtensors in the top four densest hierarchies for the DBLP dataset; they correspond
to the interaction among 20 researchers from 2007 to 2013; Figure 1(c) also presents their densi-
ties. The block in H1 with a size of 8 × 8 × 3, consists of research cooperation between Leonard
Barolli, Makoto Takizawa, Fatos Xhafa, and so on. from 2011 to 2013 in the “Algorithm
and Distributed System” field and the average connection between them is more than 10.7 in each
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Table 9. Query-specific HDS-tensors Detection Examples

Query Author Hs Volume Density nnz Return Items

Jiawei
Han

H1 7 × 7 × 5 2.52 132

{ Jing Gao, Jiawei Han, Yizhou Sun, Latifur Khan,
Mohammad M. Masud, Murat Kantarcioglu,

Bhavani M. Thuraisingham },
{ 2008 - 2012 }

H2 9 × 9 × 6 1.79 210
+ { Philip S. Yu, Charu C. Aggarwal },

+ { 2007 }

H3 11 × 11 × 7 1.39 342
+ { Wei Fan, Xifeng Yan },

+ { 2013 }

H4 18 × 18 × 7 0.78 528
+ { Jiebo Luo, Yun Fu, Thomas S. Huang, Xin Jin,
Hong Cheng, Liangliang Cao, Shuicheng Yan }

Christos
Faloutsos

H1 8 × 8 × 5 1.21 158

{ Christos Faloutsos, Lei Li, U. Kang, Leman Akoglu,
Hanghang Tong, B. Aditya Prakash,

Duen Horng Chau, Tina Eliassi-Rad },
{ 2008, 2010 - 2013 }

H2 16 × 16 × 5 0.75 358
+ { Wei Fan, Jing Gao, Philip S. Yu, Yizhou Sun,
Charu C. Aggarwal, Jimeng Sun, Xifeng Yan }

H3 19 × 19 × 7 0.56 536
+ { Hong Cheng, Spiros Papadimitriou, Xin Jin },

+ { 2007, 2009}

H4 70 × 70 × 7 0.26 2, 659

+ { RiChang Hong, Yun Fu, Yue Gao, Deng Cai,
Yan Song, Thomas S. Huang, Xiuqing Wu,

Xuelong Li, Jingdong Wang, Jiebo Luo,
Xindong Wu, Liangliang Cao, Hongjiang Zhang

Tat-Seng Chua, Jiajun Bu, Xiaoou Tang, · · · }

Vipin
Kumar

H1 7 × 7 × 1 4.24 42

{ Vipin Kumar, Shyam Boriah, Michael Steinbach,
Varun Mithal, Christopher Potter, Ashish Garg,

Steven A. Klooster },
{ 2011 }

H2 11 × 11 × 2 1.95 170

+ { Juan Carlos Castilla-Rubio, Vikrant Krishna,
Yashu Chamber, Ivan Brugere },

+ { 2012 }

H3 17 × 17 × 2 1.18 342
+ { Anuj Karpatne, Michael Lau, Alok N.Choudhary,
J. D. Stanley, Teji Abraham, Karsten Steinhaeuser }

H4 32 × 32 × 3 0.57 767

+ { Fredrick H. M. Semazzi, Yu Cheng, Xi C. Chen,
Nagiza F. Samatova, William Hendrix, Daniel Honbo,
Md. Mostofa Ali Patwary, Stefan Liess, Yusheng Xie,

Zhengzhang Chen, Ankit Agrawal, Jay Kawale,
Wei-keng Liao, Kunpeng Zhang },

+ { 2013 }

Here we only list the top-4 densest hierarchical dense subtensors resulting from three query authors (“Jiawei Han”,

“Christos Faloutsos”, and “Vipin Kumar”) for the DBLP coauthor dataset. The items following “+” denote the added

authors and/or years compared to the previous hierarchies.

year, forming a high-density clique. Also, the subtensors in other hierarchies are extended with
their other common co-authors and years and contain relatively fewer connections than H1, but
the density of blocks in H4 is also more than 2.0. Therefore, CatchCore can cater to detecting
evolving community structures at different scales in a hierarchical fashion.

6.4 Q3. Query-specific HDS-tensors Patterns

Considering the item query situation, we performed some case studies of the detected HDS-tensors
based on the algorithm described in Section 5.4. Here, we utilized the DBLP coauthor dataset and
chose some target authors to find their closely collaborated authors and active time. Considering
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Fig. 6. CatchCore is scalable with all the aspects of tensors. (a) (b) CatchCore scales linearly with the
number of tuples and the number of attributes of R. (c) CatchCore scales sub-linearly with the cardinalities
of attributes of R.

three well-known researchers in the Data Mining field, i.e., Jiawei Han, Christos Faloutsos, and
Vipin Kumar, we use those specific authors as the seeds3 and query the hierarchical dense subten-
sors. Table 9 lists the top 4 densest HDS-tensors query results.

As we can see, for each query item, the sizes and densities of different hierarchies vary greatly, re-
sulting from including different researchers and years of varying intensities of cooperation. These
results are also consistent with what we find in Google Scholar and web search. For Jiawei Han, his
close collaborators in H1 consisted of Ph.D. students he previously supervised, e.g., Jing Gao and
Yizhou Sun, and other scholars in similar research fields but from different universities, like Latifur
Khan and Bhavani M. Thuraisingham; other two famous scholars, Philip S. Yu and Charu C. Ag-
garwal, are also included in H2. It is worth noting that scholars in different fields, i.e., Multimedia,
Computer Vision, Machine Learning, are included in H4, such as Jiebo Luo, Thomas S. Huang, and
Shuicheng Yan. This reflects the relationship established through the multi-hop collaboration. For
Christos Faloutsos, those Ph.D. students he supervised made up his core collaborators inH1, e.g., U.
Kang, Hanghang Tong, Leman Akoglu, and so on. There are some overlapping with the results from
Jiawei Han afterH2, via some common collaborators, being the bridge connects two groups, includ-
ing Philip S. Yu, and Xifeng Yan. In contrast, the coauthor network of Vipin Kumar is different from
the first two; and the density of H1 is higher, that is, 7 researchers around Vipin Kumar published
42 articles in 2011; his active times are also more concentrated, which just in 3 years, 2011–2013.

Therefore, these interesting findings and patterns confirm that the query-specific HDS-tensors
detection method can offer an effective way to explore the surrounding relationship of specific
objects and provide the possibility to capture anomalies and clues, which is helpful to make full
use of the limited prior knowledge.

6.5 Q4. Scalability

Empirically, we show that CatchCore scales (sub-) linearly with every aspect of the input, i.e., the
number of tuples, the number of dimension attributes, and the cardinality of dimension attributes
we aim to find, as mathematically analyzed in Theorem 5.2.

3As for the key parameters, including the penalty p and the regularization balance factor λ, they depend on the local

density of the targets, for which we have no prior knowledge; so we choose the proper setting leading to better results.

More specifically, p = 2E − 3, λ = 20 for Jiawei Han, p = 1E − 3, λ = 20 for Christos Faloutsos, and p = 7E − 4, λ = 1, 000

for Vipin Kumar.
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To measure the scalability with each factor of the input, we started by finding the injected
subtensor with two hierarchies, i.e., 100× 100× 2 with density 0.2 and 50× 50× 1 with density 1.0,
in a randomly generated tensor R, which contains one million tuples with three attributes whose
total cardinality is 100 K. Then, we measured the running time as we changed one of the factors
at a time. Specifically, for the scalability of # of tuples, R has three attributes and a cardinality of
10K in different densities, varying from 5E − 8 to 1E − 5. For the # of attributes, we changed the
dimension from 3 to 10 for R with 1M tuples and the same cardinality. For the cardinality, the DR

of a 3-way tensor R with 1M tuples varies from 5E3 to 1E6.
As we can see in Figure 6, CatchCore scales linearly with the number of tuples and attributes;

it also scales sub-linearly with the cardinalities of attributes, which illustrates the complexity anal-
ysis in Theorem 5.2 seems too pessimistic.

7 CONCLUSIONS

In this article, we propose the CatchCore algorithm to detect the hierarchical dense subtensors
with a gradient optimization strategy in large tensors, based on a novel and interpretable uni-
form framework for dense block detection; and it can also be applied to the query-specific dense
subtensor detection scenario. CatchCore accurately detects dense blocks and hierarchical dense
subtensors for synthetic and real-world data, and outperforms state-of-the-art baseline methods. It
can identify various local dense patterns indicating attack and anomalous behaviors, like periodic
attacks and dynamic groups of researchers, and capture core collaboration and multi-hop relations
around query items. In addition, CatchCore also scales up linearly in terms of all aspects of the
tensor. Our contributions are as follows:

— Unified metric and algorithm: We design a unified metric that can be optimized in gra-
dient techniques to detect dense subtensors and propose CatchCore for hierarchical dense
subtensor detection with a convergence guarantee. We also propose query-specific dense
subtensor detection for some target items.

— Accuracy: CatchCore accurately detects dense blocks and hierarchical dense subtensors
for synthetic and real-world datasets, and it outperforms the other baseline methods. We
designed to measure the quality of detection results in the MDL principle and help select the
optimal model.

— Effectiveness: CatchCore spotted various anomalous patterns in real-world datasets, like
network intrusion and social bots. It also found hierarchical dense research co-authorship
groups for the DBLP and captured some local-dense patterns as core collaboration and multi-
hop relations of query objects.

— Scalability: CatchCore runs linearly in terms of all aspects of tensors, and takes linear
space in the number of tuples.

Reproducibility: The sourced code and datasets used in this article are available at http://github.
com/wenchieh/catchcore.

Discussion. In this article, we assume the tensor data can fit in the memory for optimization.
Thus, our method cannot be directly applied to the tensors in a streaming format or stored on
disk for real applications, such as social media and the web. Exploring other distribution or block
optimization techniques while maintaining good convergence properties might be promising for
this problem. Another trivial problem found in the experiment is that it requires a larger value
of parameter K for detecting dense enough blocks due to the limitations of the gradient-based
optimization process and the quality of local optimal. We expect progress in optimization theory
and algorithms will help address it. Indeed, our work merely explores some interesting properties
of real-world behavioral patterns, relying on researchers’ insights and precise definitions. It is
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worthy of further study on how to design a way to find or learn similar patterns automatically in
complex data.
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