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Abstract—How can we detect fraud in a big graph with rich properties, as online fraudsters invest more resources, including
purchasing large pools of fake user accounts and dedicated IPs, to hide their fraudulent attacks? To achieve robustness, existing
approaches detected dense sub-graphs as suspicious patterns in an unsupervised way, such as average degree maximization.
However, such approaches suffer from the bias of including more nodes than necessary, resulting in lower accuracy and increased
need for manual verification. Therefore, we propose HoloScope, which introduces a novel metric “contrast suspiciousness” integrating
information from graph topology and spikes to more accurately detect fraudulent users and objects. Contrast suspiciousness
dynamically emphasizes the contrasting patterns between fraudsters and normal users, making HoloScope capable of distinguishing
the synchronized and strange behaviors of fraudsters by means of topology, bursts and drops, and rating scores. In addition, we
provide theoretical bounds for how much this method increases the time cost needed for fraudsters to conduct adversarial attacks.
Moreover, HoloScope has a concise framework and sub-quadratic time complexity, making the algorithm reproducible and scalable. In
extensive experiments, HoloScope achieved significant accuracy improvements on real data with injected labels and true labels, when

compared with state-of-the-art fraud detection methods.

Index Terms—Graph mining, time series, fraud detection, contrast suspiciousness

1 INTRODUCTION

OW can we detect online fraudsters as they manipu-
late geo-locations, internet providers, and IP
addresses via large IP pools (with as many as 852,992
dedicated IPs) to hide fraudulent attacks? Online fraud
has become an increasingly serious problem because of
the high potential reward it offers to fraudsters, which
can be as much as $5 million from 300 million fake
“views” per day, according to a report [1] in December
2016. Suppose that a fraudster has a accounts or IPs, and
serves a customer who wants to buy 200 ratings or clicks
for each of b products. We suppose that each account can
only rate one product once as most of systems do. Since
the fraudster has to add 200 ratings to each product out
of a possible a ratings, the density of the fraudulent block
created is: (200-b)/(a-b) =200/a. Thus, with a large
number of enough user accounts or IPs, the fraudster can
serve as many products as needed while keeping the den-
sity low. This presents a difficult challenge for most exist-
ing fraud detection methods.
Supervised classification methods lose their advantages
in this situation, since fraudsters are capable of adversarial
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manipulation of some key model features without much
effort [2]. Graphs are built on all the behaviors between
users or between users and objects, which cannot be
avoided. An unsupervised method based on graphs then
attracts more researchers, i.e., dense block detection, since
of its robustness of fraud detection. Current dense block
detection methods [3], [4], [5] maximize the arithmetic or
geometric average degree. We use “fraudulent density” to
indicate the edge density that fraudsters create for target
objects. However, those methods have a bias of including
more nodes than necessary, especially as the fraudulent
density decreases, as we verified empirically. This bias
results in low precision, which then requires intensive man-
ual work to verify each user. Fraudar [6], [7] proposed an
edge weighting scheme based on the inverse logarithm of
objects’” degrees to reduce this bias, a scheme inspired by
IDF [8], [9]. However, this weighting scheme is fixed glob-
ally and affects both suspicious and normal edges, lowering
Fraudar’s precision, as can be seen from results using semi-
real (with injected labels) and real data (see Fig. 1).

Researchers gradually realized that purely measuring
suspiciousness with topological density limited the perfor-
mance of fraud detection. Accurately detecting fraudulent
blocks of lower density requires aggregating more sources
of information [4], [10], [11]. Consider the attribute of the
creation time of edges: fraudulent attacks tend to be concen-
trated in time; e.g., fraudsters may surge to retweet a mes-
sage, creating one or more sudden bursts of activity [12],
[13], followed by sudden drops after the attack is complete.
Sudden bursts and drops have not been directly considered
together in previous work.

Tensor-based methods provide a natural way to inte-
grate different attributes of graph edges. [4], [5], [10], [14]
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(a) HS-a using topology information out- (b) HS using holistic attributes provides (c) HS achieves the best F-measure, on

performs baselines

clear improvement, and performs the best. real data from Sina Weibo

Fig. 1. (a) and (b) show experimental results using a BeerAdvocate dataset. The better methods are able to detect fraud with high accuracy, even
when fraudulent density (plotted on the horizontal axis) is low. Both HS-« and HS are our methods, where the former only uses topology information.
We increase the number of injected fraudsters from 200 to 2,000 for HS-«, and to 20,000 for HS, while the decreasing density of fraudulent edges is
shown on the horizontal axis from right to left. Compared with HS-«, HS, which makes holistic use of several signals achieves further improvement.
(c) shows accuracy (F measure of precision and recall) results on Sina Weibo, with ground truth labels.

incorporate rich attributes into a multi-mode tensor formu-
lation, e.g., IPs, rating scores and time. However, those
methods rely on time-binning to incorporate temporal infor-
mation, and they then treat time bins independently, which
loses information about bursts and drops.

Therefore, we propose HoloScope, an unsupervised
approach, which combines suspicious signals from graph
topology, temporal bursts and drops, and rating devia-
tion. Our contrast-based weighting scheme dynamically
re-weights objects according to our beliefs about which
users are suspicious. On topology, HoloScope captures
the suspiciousness that arises when an object is connected
mostly by suspicious users while other users seldom con-
nect to it. Temporally, HoloScope detects suspicious
spikes of bursts and drops, which increases the time cost
needed for fraudsters to conduct an attack. In terms of
rating, our approach takes into account the deviation
between an object’s ratings as given by suspicious users
and non-suspicious users. For popularizing fraudsters,
the ratings would be heavily biased towards high scores,
while honest users give low scores to low-quality
objects [15]. KL-divergence is naturally used as the metric
for the deviation of distributions of ratings given by the
two groups of users.

In summary, our contributions are:

e Novel suspiciousness metric: We propose a dynamic
contrast suspiciousness metric, which emphasizes the
contrast behaviors between fraudsters and honest
users in an unsupervised way. At the same time, the
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Fig. 2. HoloScope (HS) runs in near-linear time.

contrast suspiciousness provides a unified suspicious-
ness framework, which can make holistic use of sev-
eral signals including, but not limited to, connectivity
(i.e., topology), temporal bursts and drops, and rating
deviation in a systematic way.

e Robustness and theoretical analysis of fraudsters” obstruc-
tion: We show that if the fraudsters use less than a
theoretical bound of time for an attack, they will
cause a suspicious drop or burst. In other words,
HoloScope obstructs fraudsters by increasing the
time needed to perform an attack. This theorem
guarantees temporal robustness: no matter how the
fraudsters manipulate the creation time of fraudu-
lent links, they will be caught if the attack takes less
than a fixed amount of time.

e  Effectiveness: We achieved higher accuracy than the
baselines on semi-real and real datasets. In fact,
HoloScope using only topology information (HS-«)
outperformed the graph-based Dbaselines (see
Fig. 1a), while HoloScope (HS) using all signals
achieved further improvement outperforming the
tensor-based baselines (see Figs. 1b and 1c). The
dynamic weighting of object nodes with contrast
suspiciousness enables both HS-o and HS achieve
better detection accuracy.

e Scalability: The running time of HoloScope increases
in an almost linear relationship with the number of
edges (see Fig. 2). The algorithm is theoretically
proved as fast as sub-quadratic time of the number
of nodes, with a reasonable assumption.

In addition, using microblog Sina Weibo! data, Holo-
Scope achieved a higher F-measure than the baselines in
detecting the ground truth labels, with high precision and
recall. The code of HoloScope is open-sourced for
reproducibility.?

The rest of the paper is organized as follows. Section 2
summarizes the related works. In Section 3, we describe
our contrast suspiciousness metric, and propose an algo-
rithm for detecting fraud. Experiments are designed and
conducted in Section 4. Section 5 presents conclusions.

1. The largest microblog service in China, http://www.weibo.com
2. https:/ / github.com/shenghua-liu/HoloScope
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2 RELATED WORKS

The labels for fraudsters are very limited, probably causing
supervised machine learning methods to overfit some specific
features from labeled fraudsters, e.g., rating to the same prod-
ucts at the same time, and using the same words. Because of
this overfitting, such methods lack robustness. Thus most
existing works study fraud detection in an unsupervised way
due to the limited amount of labels, which are based on the
density of blocks within adjacency matrices [16], [20], or
multi-way tensors [4], [5]. OddBall [21] found new rules and
patterns in the distribution of eigenvalues for anomaly detec-
tion. [20] detected suspicious patterns in the plots of singular
vector decomposition (SVD). Instead of detecting density
block by average degree [3], [22] and CoreScope [23] proposed
to use Shingling and K-core algorithms respectively to detect
anomalous dense blocks in huge graphs. Taking into account
the suspiciousness of each edge or node in a real-world graph
potentially allows for more accurate detection. Fraudar [6], [7]
proposed to weight edges’ suspiciousness by the inverse loga-
rithm of objects’ in-degree, to discount popular objects. [24]
found that the degrees in a large community follow a power
law distribution, forming hyperbolic structures. This suggests
penalizing high degree objects to avoid unnecessarily detect-
ing the dense core of hyperbolic community [25]. The spikes
in degree distributions were studied, and synchronized
behaviors were detected in [26], [27]. Deep neural network
methods are used for anomaly detection [28], [29], but these
are black-box approaches that provide little interpretability
regarding the detected output.

In addition to topological density, EdgeCentric [15] studied
the distribution of rating scores to find the anomalies. In terms
of temporal attributes, the identification of burst periods has
been studied in [30]. A recent work, Sleeping Beauty (SB) [31],
more intuitively defined the awakening time for a paper’s
citation at the beginning of burst period. [32] detected the out-
liers of time series as the changing point. [33] clustered the
temporal patterns of text phrases and hash tags in Twitter,
and [34], [35] studied the temporal dynamics of networks sep-
arately on ego-network and network motifs. Meanwhile, [11],
[36] modeled the time stamped rating scores with Bayesian
model and autoregression models respectively for anomalous
behavior detection. Even though [12], [37], [38] have used
burst patterns to detect review spam, a sudden drop in tempo-
ral spikes has not been considered yet. [12] detected spams in
singleton reviews, where each spammer writes only no more
than one review in the system. The algorithms found the com-
mon period in which multiple time series have bursts, includ-
ing the time series of ratios of singleton reviewers. We solve a
different fraud detection problem in which spammers have to
reuse the limited accounts to create as many fake reviews as
possible. Hence our method finds a suspicious signal from
topological connections.

Aggregating suspiciousness signals from different attrib-
utes is challenging for unsupervised learning. [39] proposed
Reciprocal Rank Fusion (RRF) scores for combining differ-
ent rank lists in information retrieval. However, RRF
applies to ranks, which throws away the suspiciousness
scores in fraud detection.

Without explicitly applying aggregation, researchers used
the tensor-based methods to consider different attributes.
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CrossSpot [10], [14], a tensor-based algorithm, estimated the
suspiciousness of a block using a Poisson model. However, it
did not take into account the difference between popular
and unpopular objects. Moreover, although CrossSpot, M-
Zoom [4] and D-Cube [5] can consider edge attributes like
rating time and scores via a multi-mode tensor, they require
a time-binning approach. When time is split into bins, attacks
that create bursts and drops may not stand out clearly after
time-binning, since each time bin is treated as an indepen-
dent dimension in the temporal mode of tensor. The problem
of choosing bin widths for histograms was studied by
Sturges [40], assuming an approximately normal distribu-
tion, and by Freedman-Diaconis [41] based on statistical dis-
persion. However, the binning approaches were proposed
for the time series of a single object, which is not appropriate
for different kinds of objects in a real-world graph; that
is, popular products and unpopular products should use
different bin sizes.

Belief propagation (BP) [18] is another common approach
for fraud detection that can incorporate some specific edge
attributes, such as rating and sentiments of reviews associ-
ated with edges [19]. It can also use seeds discovered from
suspicious patterns [26] as a prior knowledge. However, its
robustness against adversaries that try to hide themselves is
not well understood. Based on a similar idea, Copy-
Catch [17] detected lockstep behavior by maximizing the
number of edges in blocks constrained within time win-
dows. However, this approach ignores the distribution of
edge creation times within the window, and it does not cap-
ture bursts and drops directly.

Finally, we summarize the previous baselines compared to
our HoloScope in Table 1. Camouflage means that fraud-
sters rate some normal or popular objects to behave like
honest users, besides the fraudulent rating. Here we use
“camouflage” to indicate that the detection algorithms are not
sensitive to camouflage, or resistance as proved in [6], [7]. We
use “hy-community” to indicate whether the method can
avoid detecting the naturally-formed hyperbolic topology
that is unnecessary (false positive) for fraud detection. There-
fore, HoloScope is the only one that considers the complete
property list, especially including temporal spikes (sudden
bursts and drops, and multiple bursts), hyperbolic topology,
and rating deviation in a unified suspiciousness framework.
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3 PROPOSED APPROACH

The definition of our problem is as follows.

Problem 1 (Informal definition). Given quadruplets (user,
object, timestamp, #stars), where timestamp is the time
when a user rates an object, and #stars is the categorical rat-
ing scores:

- Find a group of suspicious users, and suspicious
objects or a rank with suspiciousness scores, and

- to optimize the metric under the common knowledge of
suspiciousness from topology, rating time and scores.

To make the problem more general, timestamp and
#stars are optional. For example, in Twitter, we have
(user, object, timestamp) triples, where a user retweets a
message object at timestamp. In a static following network,
we have pairs (user, object), with user following object.

Our metric should capture the following basic traits.

First, the fraudsters need to create as many fake reviews
as they can to boost fraudulent products.

Trait 1 (Engagement). Fraudsters engage as much fire-
power as possible to boost customers” objects, i.e., suspi-
cious objects.

Second, as [6] suggested, a popular object is not likely a
fraudulent object. In other words, suspicious objects attract
less attention from ordinary users due to their low quality.
Then we have:

Trait 2 (Less Involvement). Suspicious objects seldom
attract non-fraudulent users to connect with them.

Third, fraudsters conduct their attacks in a short period
of time, creating temporal spikes with bursts and sudden
drops, as reported in previous works [12], [13].

Trait 3 (Spikes: Bursts and Drops). Fraudulent attacks are
concentrated in time, sometimes over multiple waves of
attacks, creating bursts of activity. Conversely, the end of
an attack corresponds to sudden drops in activity.

Finally, the rating distribution of fraudsters differs
greatly from those of typical users, as observed by [15]. This
occurs because fraudsters are aiming to manipulate the rat-
ing of products.

Trait 4 (Rating Deviation). The rating behavior of fraud-
sters deviates greatly from the rating behavior of normal
users.

In the following sections, we will show that our proposed
metric can make holistic use of several signals, namely
topology, temporal spikes, and rating deviation, to locate
suspicious users and objects satisfying the above traits. That
is why we call our method as HoloScope.

3.1 HoloScope Metric

To give a formal definition of our metric, we describe the
quadruplets (user, object, timestamp, #stars) as a bipartite
and directed graph G = {U,V, E}. U is the source node set
corresponding to users, V' is the sink node set correspond-
ing to objects, and £ contains the directed edges from U to
V. Generally, graph G is a multigraph, i.e., multiple edges
can be present between two nodes. Multiple edges mean
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that a user can repeatedly comment or rate on the same
product at a different time, as is common in practice. Users
can also retweet messages multiple times in Sina Weibo.
Each edge can be associated with rating scores (#stars),
and timestamp, for which the data structure is introduced
in Section 3.1.2.

Our HoloScope metric detects fraud from three perspec-
tives: topology connection, timestamp, and rating score. To
easily understand the framework, we first introduce the
HoloScope in a perspective of topology connection. After-
wards, we show how we aggregate the other two perspec-
tives into HoloScope. We first view G as a weighted
adjacency matrix M, with the number of multiple edges
(i.e., edge frequency) as matrix elements.

Lockstep behaviors are always a strong signal of fraud, in
which a group of suspicious source nodes A C U intensively
actona group of sinknodes B C V. Based on Trait 1, the total
engagement of source nodes A with sink nodes B can be basi-
cally measured via density measures. There are many den-
sity measures, such as arithmetic and geometric average
degree. Our HoloScope allows for any such measure. How-
ever, as the average degree metrics have a bias toward
including too many nodes, we use a measure denoted by
D(A, B) as the basis of the HoloScope, defined as

2yen fa(vi)

D(4,
Al + | B

B) = ; (6V)
where f4(v;) is the total edge frequency from source nodes
A to a sink node v;. f4(v;) can also be viewed as an engage-

ment from A to v;, or A’s lockstep on v;, which is defined as

>

(ujv;)€ENuj€A

fa(vi) =

Tji - i (2

where constant o;; is the global suspiciousness on an edge,
which can be equal to 1 if no extra global suspiciousness is
assigned to a node pair (u;,v;). We will propose a way to
assign the suspiciousness in Section 3.1.2. ej; is the element
of adjacency matrix M, i.e., the edge frequency between a
node pair (u;,v;). The edge frequency e;; becomes a binary
in a simple graph. The global suspiciousness as a prior
information can come from the degree, and from additional
domain knowledge, such as duplicated review sentences
and unusual behaving time.

To maximize D(A, B), the suspicious source nodes A and
the suspicious sink nodes B are mutually dependent. There-
fore, we introduce an informal definition of contrast
Suspiciousness:

Definition 1 (Contrast suspiciousness). The contrast suspi-
ciousness denoted as P(v; € B|A) is defined as the conditional
likelihood of a sink node v; that belongs to B (the suspicious
object set), given the suspicious source nodes A.

A visualization of the contrast suspiciousness is given in
Fig. 3. The intuitive idea behind contrast suspiciousness is
that in most cases, we need to judge the suspiciousness of
objects by currently chosen suspicious users 4, e.g., an object
is more suspicious if very few users not in A are connected to
it (see Trait 2); the sudden burst of an object is mainly caused
by A (see Trait 3); or the rating scores from A to an object are
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A/

Fig. 3. An intuitive view of our definitions in the HoloScope.

quite different from those of other users (see Trait 4). There-
fore, such suspiciousness makes use of the contrasts between
users in A and users not in 4, or the whole set.

Finally, instead of maximizing D(A, B), we maximize the
following expectation of suspiciousness D(A, B) over the
probabilities P(v; € B|A)

max HS(A) :=E[D(A, B)]

_ 1 3)
keV

where for brevity we write P(v;|A) as meaning P(v; € B|A).
1 — P(v;]A) is the probability of v; being a normal sink
node. We dynamically calculate the contrast suspiciousness
for all objects, after every choice of source nodes A.

Using this overall framework for our proposed metric
HS(A), we next show how to satisfy the remaining traits. To
do this, we define contrast suspiciousness P(v;|A) in a way
that takes into account various edge attributes. This will allow
greater accuracy particularly in detecting low-density blocks.

3.1.1 HS-u: Less Involvement from Others

As previous work [24] has shown, large communities form
hyperbolic structures, which we generate in our synthetic
data (see the lower-right block in Fig. 4a), and we also find
in real BeerAdvocate data (see Fig. 4b). Thus, if we compare
the rectangular dense block and the hyperbolic core (i.e., the
upper left part of hyperbolic block in Fig. 4a), which one is
more suspicious? Fig. 4b also shows the comparison
between the naturally formed hyperbolic community and
the injected fraudulent block with random camouflage on
popular objects. By examination in the scenario of online
reviews, the products in a hyperbolic core are also rated by
many other people not in the core, with high scores. In a
rectangular dense block, the products seldom attract other
people to give high scores, which may not be really a good
products. So a rectangular dense block is more suspicious.

Existing algorithms including Fraudar and those based
on average degree or square-root (sqrt) weight always find
a dense block overlapping both the rectangular block at the
top left and the hyperbolic block, to maximize their objec-
tives (see Fig. 4a).

Based on Trait 2, a sink node should be more suspicious
if it attracts connections mostly from the suspicious source
nodes A and rarely from other nodes. Mathematically, we
capture this by defining
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Fig. 4. (a) The synthetic data consists of hyperbolic and rectangular
blocks, with volume density around 0.84 and 0.60, respectively. The cam-
ouflage is randomly biased towards columns of high degree. Existing
methods without considering contrast suspiciousness, i.e. Trait 2, do not
detect the most suspicious area precisely. They sometimes even miss
smaller density rectangular areas, due to the existence of hyperbolic con-
nections. (b) A real data of naturally-formed hyperbolic community, and
injected dense block. The injection is 2000 x 200 with biased camouflage.

P(v;]A)  q(;), where o; = ;?EZZ; ;

4)

where fi7(v;) is the weighted in-degree of sink node v;. Simi-
lar to fa(v;), the edges are weighted by global suspicious-
ness. «; € [0, 1] measures the involvement ratio of A in the
activity of sink node v;. The scaling function ¢(-) is our belief
about how this ratio relates to suspiciousness, and we
choose the exponential form ¢(z) = b*~!, where base b > 1.
Such a function form can rapidly boost the ratio for a high
z, and keep the ratio in a steady and low level for a low z.
Since z € [0, 1], the scaling function ¢(-) can be viewed as a
variant of half Sigmoid function. The details for function
q(z) are described in Section 3.3.

For clarity, our HoloScope method is denoted as HS-«
when it is applied only on adjacency matrix of a graph. In
Fig. 4a, the results of the synthetic data show that HS-«
detected the exact dense rectangular block (b= 128),
whereas the other methods included numerous non-
suspicious nodes from the core part of the hyperbolic com-
munity, resulting in low accuracy. In the beer review data
from the BeerAdvocate website, testing on different fraudu-
lent density (see Fig. 1a), our HS-o remained at high accu-
racy, whereas the other methods’ accuracy dropped quickly
when the density fell below 70 percent. The reason for these
results is that the existing metrics assign static weights,
rather than using our beliefs about which users are suspi-
cious to dynamically update the weights.

The main idea is that HS-o can do better because it
dynamically adjusts the weights for sink nodes, penalizing
those sink nodes that also have many connections from
other source nodes not in A. The weights are used for every
edge connected to those sink nodes. In contrast, although
Fraudar proposed to penalize popular sink nodes based
their in-degree, these penalties also scaled down the
weights of suspicious edges. The Fraudar (green box)
improved the unweighted “average degree” method (red
box) by only a very limited amount. Moreover, with a
heavier penalty, the “sqrt weight” method (blue box)
achieved better accuracy on source nodes but poorer accu-
racy on sink nodes, since those methods used globally fixed
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Fig. 5. (a) and (b) are the time series (histogram) of a real message being retweeted in Sina Weibo. The horizontal axis is the number of seconds after
2013 — 11 — 1. In (a), A; and A, have the same number of retweets of the message. A; is more suspicious than A, since A; has more users involved
in the sudden burst, which causes the strange burst and drop. (c) is the auxiliary for the proof of time cost obstruction.

weights, and the weights of suspicious nodes were penal-
ized as well. Hence the hyperbolic structure pushes those
methods to include more nodes from its core part.

In summary, our HS-a using dynamic contrast suspi-
ciousness can improve the accuracy of fraud detection in
‘noisy’ graphs (containing hyperbolic communities), even
with low fraudulent density.

3.1.2 Temporal Bursts and Drops

Timestamps for edge creation are commonly available in
most real settings. If two subgroups of microblog users
have the same number of retweets of a message, can we say
that they have the same suspiciousness? In the example
shown in Fig. 5a, the red line is the time series of the total
retweets of a message in Sina Weibo. The blue dotted line
and green dashed line are the retweeting time series, respec-
tively, from user groups A; and A,. The two series have the
same area under the time series curves, i.e., the same num-
ber of retweets. However, considering that fraudsters tend
to surge to retweet a message to reduce the time cost, the
surge should create one or more sudden bursts, along with
sudden drops. Therefore, the suspiciousness of user group
A, and that of Ay become quite different even though they
have the same number of retweets, which cannot be
detected solely based on connections in the graph. Thus we
include the temporal attribute in our HoloScope framework
for defining contrast suspiciousness.

To include the temporal attribute, we introduce a simple
but effective data structure, the property indexing matrix (PIM).
Each kind of property is stored in a list of property entries.
Each property entry is associated with a pair composed of a
source node and a sink node. The timestamps of multiple
edges form a list and are associated with the corresponding
entry. The PIM has a similar structure to the weighted adja-
cency matrix of G, except that it stores the index of a property
entry as an element, instead of the connection frequency. we
can easily find the timestamps of edges from source nodes in
A via “slicing” operations on the PIM.

Denote the list of timestamps of edges connected to a sink
node v as T,. To simplify our notation, we use 7" without sub-
script when talking about a single given sink node v. Let
T ={(to, ), (t1,¢1), ..., (te,c.)} as the time series of T, i.e., the
histogram of 7'. The count ¢; is the number of timestamps in
the time bin [t; — At/2,t; + At/2), with bin size At. The bin
size of the histogram is calculated according to the maximum

of Sturges criteria and the robust Freedman-Diaconis’ crite-
ria [41]. Note that the HoloScope can tune different bin sizes
for different sink nodes, e.g., popular objects need fine-
grained bins to explore detailed patterns. Hence, the Holo-
Scope is more flexible than tensor-based methods, which use
a globally fixed bin size. Moreover, the HoloScope can update
the time series at a low cost when 7T'is increasing.

To consider the burst and drop patterns described in
Trait 3, we need to decide the start point of a burst and the
end point of a drop in time series 7. Let the burst point be
(tm, cm), having the maximum value c,,. According to the
definition in the previous “Sleeping Beauty” work, we use
an auxiliary straight line from the beginning to the burst
point to decide the start point, named the awakening point of
the burst. Fig. 5b shows the time series 7 (red polygonal
line) of a message from Sina Weibo, the auxiliary straight
line ! (black dotted line) from the lower left point (¢, c;) to
the upper right point (¢,,, ¢,,), and the awakening point for
the maximum point (¢,,, ¢,), which is defined as the point
along the time series 7 which maximizes the distance to [.
As the dotted line perpendicular to I suggests in this figure,
the awakening point (¢, c,) satisfies

|(Cm - CO)t - (tm - tO)C + thO - CmtO‘

V(e — o + (t — t0)’ v
Cm Co m 0

t, = arg max
(e)ET t<tm

Finding the awakening point for one burst is not enough,
as multiple bursts may be present. Thus, sub-burst points and
the associated awakening points should be considered. The
algorithm is summarized in Algorithm 1. The MultiBurst
algorithm detects other bursts by recursively searching the
left and right parts of time series after removing the current
burst period (t,, t,,), until no time series are left. Finally, a list
of bursts including awakening and burst time, slops, and alti-
tude differences are returned by the algorithm.

Thus the contrast suspiciousness of burst awareness sat-
isfies P(v;|A) x q(¢;), where defining ¢, as the involvement
ratio of source nodes from A in multiple bursts. Let the collec-
tion of timestamps from A to sink node v; be 7'4. Then,

v = P(T)

q)(TU) ; and (I)(T) = Z Acum * Sam Zl(t S [tmtm]),

(tastm) =

(6)
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where s,,, is the slope from the output of the MultiBurst
algorithm. Here s,,, is used as a weight based on how steep
the current burst is. The key point is that ¢; € [0, 1] measures
how many of the total users involved in the bursts of an
object are from the candidate set A. Considering the frame-
work of dense block detection, only those common users
that are always and synchronously involved in steep bursts
of many objects can be detected as fraudsters, where the
fraudulent attacking satisfies Trait 3. In another word, nor-
mal users that are diversely involved in the burst of popular
objects will not be detected as false positive cases with our
contrast suspiciousness of burst.

Algorithm 1. Multi Burst Algorithm

Input Time series 7 of sink node v, beginning index i, end
index j
Output A list of awakening-burst point pairs,
Sqm: slope of the line passing through each point pair,
Ac,y,: altitude difference of each point pair.
If j —i < 1 then return
(tm, cm) = point of maximum altitude in 77;.
(ta, ¢q) = find awakening point as Eq. (5) in T ;.
Acam = Cm — Cq, and 54y, = B/ (tma—ta)
Append {(t4,¢q), (tm, cm)}, Sam, and Ac,,, into the output.
MultiBurst(T ,i,a — 1)
k = Find the first local min position from indices m + 1 to j
MultiBurst(T , k, j)

In fact, sudden drops are also a prominent pattern of
fraudulent behavior as described in Trait 3, since after creat-
ing the attack is complete, fraudsters usually stop their
activity suddenly. To make use of the suspicious pattern of
a sudden drop, we define the dying point as the end of a
drop. As Fig. 5b suggests, another auxiliary straight line is
drawn from the highest point (¢,,, ¢;) to the last point (¢,
c.). The dying point (¢4, ¢4) can be found by maximizing the
distance to this straight line. Thus we can discover the
“sudden drop” by the absolute slope value ="/, _;
between the burst point and the dying point. Since there
may be several drops in a fluctuated time series 7, we
choose the drop with the maximum fall, as Algorithm 2.

Algorithm 2. MaxDrop Algorithm

Input Time series 7 of sink node v, beginning index i, end
index j
Output Acy: altitude difference of the point pair,
spqa: slope of the line passing through the point pair.
If j —i < 1 then return
(tm, &) = point of maximum altitude in 7 ;.
(t4, cq4) = find dying point in 7 ;; by definition.
Acys = ¢, — cq, and sy = A(M/(td—tm)
If Acyq is larger than the drop found in the output
then
Overwrite output with Ac,g and sp.
MaxDrop(T ,i,m — 1)
MaxDrop(T,d, j)

MazDrop algorithm detects the next possible drops by
recursively searching in the left and right part of time series
after removing the current drop period (t,,andty), until no
time series are left. As a result, MaxDrop algorithm returns
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the maximum drop fall Acyy, and its drop slope s;; among
those detected drops. Such a sudden drop of created edges
to an object is unusual and indicates the suspiciousness of
the object. Therefore, we use the weighted drop slope as a
measure of global suspiciousness in Equation (2), namely,

o = Ade * Shds (7)

for every edge connected to the object v;, and we omit the
subscripts of edges for simplicity.

With this approach of detecting bursts and drops, we
now show that this provides a provable time obstruction for
fraudsters.

Theorem 1. Let N be the number of edges that fraudsters want
to create for an object. If the fraudsters use an amount of time

less than © > w, then they will be tracked by a sus-
picious burst or drop, where At is the size of time bins and S;
and Sy are the slopes of normal rise and decline, respectively.

Proof. The most efficient way to create NV edges is to have
one burst and one drop; otherwise, more time is needed.
As shown in Fig. 5¢, to minimize the slope, every point in
the time series should be in line with the two auxiliary
straight lines to the highest point ¢,,, separately from the
awakening and dying points. Otherwise, the slopes will
exceed the normal values S; and S,. Hence, we consider
only the triangle with the auxiliary lines as its two edges.
Note that a trapezoid whose legs have the same slopes as
the triangle’s edges cannot have a shorter time cost. Then

C'"l, CTIL
= 1, = SQv
niAt naAt

(n1 +mn2) - ey, = 2N'.

Here n; and ny are the number of time bins before and
after the burst. N’ is the total number of rating edges,
and N’ > N consider some edges from normal users.
Thus, solving the above equations, we have

QN/At(Sl + Sg) QNAt(Sl + Sg)
e At = > .
t (nl * n2) \/ 51 . Sz N \/ Sl . SZ

a

) AS S
We also have the height of the burst ¢,, > ,/21[;1 fo?.

Thus, the maximum height of time series 7 cannot be larger
by far than that of a normal sink node. That is why we use
the altitude differences Ac,, and Acy; separately in Equa-
tions (6) and (7) as weights.

3.1.3 Rating Deviation and Aggregation

We now consider edges with categorical attributes such as
rating scores, text contents, etc. For each sink node v;, we use
the KL-divergence «; of the rating distribution from the sus-
picious source nodes A given that from the other nodes,
ie, U\A.

)

y

where K is the number of categories, e.g., different rating
scores, words or topics. Let Fj(v;) and F(v;) are the fre-
quencies for the kth category separately from users in A and
U\ A to object v;. To avoid being divided by a zero

Fk(’UL
ki =Y Fip(v;)log
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frequency, we add 1 to each category as a multinomial prior.
Here, we use the distribution from other nodes U \ 4, as
opposite to that from the whole source nodes U, aiming to
avoid a trivial case where most of the rating scores are from
A. The rating deviation «; is scaled into [0,1] by the maxi-
mum value before being passed into function ¢(-) to compute
contrast suspiciousness. Notice that rating deviation is
meaningful when both A and U \ A have comparable num-
bers of ratings. Thus, we weighted «; by a balance factor, i.e.,

. min{ fa(v) fU\A(Ui)} »
' fona(wi)” fa(vi) "

Moreover, the neutral scores can be ignored in the KL-diver-
gence for the purpose of detecting fraudulent boosting or
defamation.

To make holistic use of different signals, i.e., topology,
temporal spikes, and rating deviation, we need a way to
aggregate those signals together. As far as we know, there
are few approaches that can be used for aggregation in an
unsupervised framework. We have tried to use RRF (recip-
rocal rank fusion) scores from Information Retrieval. Com-
pared to the RRF score, we found that joint probability, i.e.,
multiplying those signals together, was the most effective
way to aggregate

P(v;]A) = q(ai)q(@;)q(i;) = b4iteit =3, (8)

In this way, we can consider the absolute suspiciousness
value of each signal, as opposed to only using ranking
order. Moreover, being wrapped with ¢(z), the signal values
cannot be canceled out by multiplying a very small value
from other signals. As a concrete example, a suspicious
spike can retain a high suspiciousness score by multiplying
a very small score from low fraudulent density.

3.2 Algorithm and Time Complexity

Before designing the full algorithm for large scale datasets,
we first introduce the most important sub-procedure,
GreedyShaving, in Algorithm 3.

Algorithm 3. GreedyShaving Procedure

Given bipartite multigraph G(U, V, E),
initial source nodes Ay C U.
Output suspect source nodes A* C U,
target sink probabilities P*.
Initialize:
A=A
P= calculate contrast suspiciousness given A
S = calculate suspiciousness scores of source nodes A.
MT = build priority tree of A with scores S.
while A is not empty do
u = pop the source node of the minimum score from M7
A = A\ u, delete u from A.
Update P with respect to new source nodes A.
{(takes O(d,, - (JA] — 1)) time)}
Update MT with respect to new P.
{(takes O(d,, - (|A] — 1)log | Ap|) time)}
A* =source nodes A that has the best objective HS(A*) so far.
end while
return A* and P(v|A*),ve V.
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At the beginning, this greedy shaving procedure starts
with an initial set Ay C U as input. It then greedily deletes
source nodes from A, according to users’ scores S

>

vii(uj,v;)€E

S(u; € A) = P(vi|A),

Ujl c€ji

which can be interpreted as how many suspicious nodes that
user u; is involved in. So the user is less suspicious if having
a smaller score, with respect to the current contrast suspi-
ciousness P, where we use P to denote a vector of contrast
suspiciousness of all sink nodes. We build a priority tree to
help us efficiently find the user with the minimum score. The
priority tree updates the users’ scores and maintains the new
minimum as the priorities change. With the removal of a
source node in A, the contrast suspiciousness P changes,
after which we then update users” scores S. The algorithm
keeps reducing A until it is empty. The best A* maximizing
objective HS and P(v|A*) are returned at the end.

The awakening and burst points only need to be detected
once for each sink node by MultiBurst algorithm (see Algo-
rithm 1), which is linear of the time series size for sink node
v, that is, O(d,), where d, is the degree of v. Then for all sink
nodes, the detection cost is O(| E|), which is considered as the
initial step before the GreedyShaving procedure. Thus the
calculation of the contrast suspicious P(v|A) for a sink node
v needs only O(|4|) amount of time. With source node j as
the jth one removed from A, by the GreedyShaving proce-
dure, |Ag| = my, and the out-degree as d;, the complexity is

ZO

J=2,mg

(j — 1) -logmyg) = O(my| Ep|logmyg),  (9)

where Ej is the set of edges connected to source nodes Aj.
With the GreedyShaving procedure, our scalable algo-
rithm can be designed so as to generate candidate suspicious
source node sets. In our implementation, we use singular
vector decomposition for our algorithm. Each top singular
vector gives a spectral view of high connectivity communi-
ties. However, those singular vectors are not associated with
suspiciousness scores. Thus combined with the top singular
vectors, our fast greedy algorithm is given in Algorithm 4.

Algorithm 4. FastGreedy Algorithm for Fraud Detection

Given bipartite multigraph G(U, V, E).
Output suspect source nodes A* C U, and the probabilities of
being target sinks, P*.
LL = get first several left singular vectors
forall L € 1L do
Rank source nodes U decreasingly on L")
U™ = truncate u € U when L) < L
GreedyShaving with initial U \/ﬁ
end for
return the best A* with maximized objective HS(A*),
and the rank of v € V by f4(v) - P(v]A%).

Theorem 2 (Algorithm complexity). In the graph G(U,V, E),
given |V|=O(|U|) and |E| = O(|U|"), the complexity of
FastGreedy algorithm is subquadratic, i.e., 0(\U| in little-o
notation, if the szze of truncated user set [UW| <|U |1 ¢, where
e > max{1.5

7{50
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/40 = ij(k) !"

Fig. 6. Auxiliary for the proof of algorithm complexity.

Proof. The FustGreedy algorithm executes GreedyShaving
in constant iterations. A, is assigned to U in every
GreedyShaving procedure. Then mg = |Ag| = |U¥)]. In the
adjacency matrix M of the graph, we consider the subma-
trix My with Ay as rows and V as columns in Fig. 6. The
worst case of computing complexity is that the fraudulent
dense block is in submatrix M. Thus we assume that the
fraudulent dense block has at most mg rows and O(my)
columns. Excluding the dense block, the remaining part
of M is assumed to have the same density with the whole
matrix M. Therefore, the total number of edges in M is

_ o, mo - |E]- (V] —mp)
ot = 0+l

| E
=0 (i + )

= O(|UP* + U | B)).

(10)

Then based on Equation (9), the algorithm complexity is

O(mo| Eyllog mg) = O((|U*/* + [U " 0)log |U]).

Therefore, if ¢ > max{1.5,52-}, then the complexity is

subquadratic o(|U|*). O

In a real-life graph, ¢y < 1.6, so if € > 1.5 the complexity
of the FustGreedy algorithm is subquadratic. Therefore,
without loss of performance and efficiency, we can limit
[U®| < |U]Y* to truncate an ordered U in the FastGreedy
algorithm for a large dataset. The time complexity is then
O(|U|1.875).

In the FastGreedy algorithm for HS-, SVD on adjacency
matrix M is used to generate initial blocks for the
GreedyShaving procedure. Although we can still use SVD on
matrix M for HS on holistic attributes, nevertheless consider-
ing attributes of timestamps and rating scores may bring
more benefits. As we know, a multi-mode tensor is an intui-
tive way to represent a graph with multiple edge attributes,
i.e.,, bucketized timestamps (time bins), and # of stars are
another two modes besides users and products. Fig. 7 illus-
trates a tensor with three modes. Observing that not every
combination of # of stars, time bins and products has a value
in the tenor representation, we hence can only choose every
existing triplets (object, timestamp, #stars) as one column
and each user as a row, to form a new matrix. The above
transformation is called the matricization of a tensor, which
outputs a new matrix as the figure shows. With proper time
bins, e.g., one hour or day, and with re-clustering of #stars,
the flattening matrix becomes more dense and contains more
attribute information. Therefore, we use such a flattened
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time bins (product, time bins)

user

user

product

Fig. 7. An example of a tensor matricization to a matrix.

matrix with each column weighted by the sudden-drop sus-
piciousness of the corresponding product for users’ singular
vectors Ly, in the FastGreedy algorithm.

As an alternative, K-core can also be used as the start of
the GreedyShaving procedure, which is also reported as a
complementary success of SVD [23].

3.3 Theoretical Analysis and Scaling Base

We will now show how the scaling base b of ¢(-) affects our
algorithm and objective function. In a step of the
GreedyShaving algorithm, we assume A’ = A\ {u;} by
shaving a source u. Let HS(A) = Yoiev fa(vi) P(v;|A), ie.,
the numerator of HS(A). To simplify, we let global the sus-
piciousness o;; = 1 for all edges, and denote P(v;|4) and
P(v;|A’) as P; and P! respectively. Then

HS(A') = HS(A\ w)) = ) _(fa(vi) = ) P]-
eV

And

AHS = HS(A) — HS(A')
= > eplAP+ Y P,
LG eE] 7 € AN #iN(F 1) EE L:(j.l)eE

where AP, = P, — P|.
Denoting AHS/(>; AP, + 1) as w;, we have the following
theorem:

Theorem 3. Given that A’ = A\ {u;}, the objective value
increases, i.e., HS(A') > HS(A) if and only if user u; has
smaller w; than HS(A).

Proof. Since

_ HS(A) - AHS
A =1+ B

HS(A)

HS A, = 9
() VES WD

> HS(A)

we can derive that
AHS

HS(A) > =————=
(4) d>LAR+1

;.

This proves the necessity half of the theorem. We can also
derive that HS(A") > HS(A) based on the above inequal-
ity, which proves the sufficiency part of the theorem. O

Corollary 1. All users w; from the optimal source nodes A*, sat-
isfy w; > HS(A").

This corollary holds since if w; < HS(A*), we can use
Theorem 3 to increase HS(A*), which contradicts the fact
that HS(A*) is the maximum solution. We know that

o Dz AP+ el
T 2 AR+
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Fig. 8. HS is not sensitive to scaling base b in some interval.

Let’s consider the HoloScope HS-« on connection graphs as an
example. For the users who have the same AP, and the same
degree, the user u; is likely to be shaved, if connecting to the
sinks that few users in A connect to, i.e., smaller involving
ratio P, = b ! from A. The larger base b can make the interval
growing quickly between high and low involving ratios, so
that the user with the lower involving ratio is easily to be
shaved. More importantly, we have AP, = b1 —pa—ae-1 =
(1 — b=2) . Therefore, when the users u; have the same
degree, and the same Aw; for each connected sink node [, a
larger b offers the shaving algorithm more bias toward keep-
ing the users who cover the sinks that have larger «;, while
shaving those who cover the less involved sinks.

In fact, let the derivative of P, be no less than 1. We con-
clude that when «o; > 1 — %, the scaling function ¢(-)
amplifies the difference Ae;. Thus, small b will shrink A,
while large b helps amplify the difference from a smaller o;.

4 EXPERIMENTS

In our experiments, we only consider the significant multiple
bursts for fluctuated time series of sink nodes. We keep those
awakening-burst point pairs with the altitude difference Ac
more than half of the largest altitude difference in time series.
Table 3 gives the statistics of our six datasets which are pub-
licly available for academic research, including BeerAdvocate
data [42], Yelp data,®> Amazon review data in categories [43],
and Amazon reviews with mixed categories [44].

4.1 Parameter Sensitivity

As we have theoretically analyzed the scaling base b in func-
tion ¢(z), we test the sensitivity of b on two datasets with
different fraudulent density by choosing b from 2 to 256.
The results of the F-measure on users are shown in Fig. 8.
The fraudulent density is given after the name of data in a
bracket. The curves of “phone&acc (0.100)” and “yelp
(0.100)” are overlapped in the figure, since they have almost
the same F-measure. The AUCs on objects are all 1.0 for
those testing b. Therefore, generally speaking, our perfor-
mance is not sensitive to b, as the empirical results shows
that around 5 percent difference between the choices of b.
As b increases, the performance quickly becomes stable after
b = 8, which agrees with the theoretical analysis that larger b
helps in shaving false positive users. We suggest that scal-
ing base b € [8,32] in practice, since a very large b requires
an extremely high ratio of fraudulent connections to objects,

3. The Yelp dataset is from https:/ /www.yelp.com/dataset_challenge

(b) Yelp

200 300 0 100

b

200 300

b

(c) Amazon mix category

which may fail to detect those suspicious users if some nor-
mal users have the similar connection. In the following
experiments, we choose b = 32.

We also compare the different forms of scaling function
q(z), and we run the results on the BeerAdvocate dataset
with fraudulent density 0.1. As shown in Table 2, the RRF
scores [39] is computed

1

RRE(A) =3 o

reR

where r(v|A) is the order of v in a rank list by contrast
suspiciousness P(v|A). R is a collection of rank lists
obtained by all suspiciousness values of holistic signals.
The constant k is essentially used to harmonize the differ-
ences among the top ranks. For example, if £ = 0, the dis-
tance between ranks 1 and 2 is 0.5, while the rest of
infinity items sharing the residual 0.5. So we choose
k=60 as [39] suggested, implying that the top 60 items
share the same distance with the rest. As for "POW”, we
use the power form as scaling function

q(v]A) = (@~ ¢-x)".

We tried b=2,4,8 and all the parameters had lower F-
measures, so we only list b = 2 in the table.

As we can see, the joint probability of the exponential scal-
ing function (8) performs in a promising manner. RRF throws
away the suspiciousness scores, which provides helpful infor-
mation in fraud detection. The product of different

TABLE 2
Performances of Different Scaling Functions
source nodes sink nodes
F-measure Precision Recall AUC
RRF [39] 0.0418 0.0749 0.0290 0.7849
POW 0.1166 0.1116 0.1220 0.5245
EXP 1.0000 1.0000 1.0000 1.0000
TABLE 3
Data Statistics
Data Name #nodes #edges time span
BeerAdvocate [42] 265K x 50.8 K 1.07M Jan 08-Nov 11
Yelp 686 K x 853K 268 M  Oct 04-Jul 16
Amazon Phone & Acc[43] 226 M x 329K 345M Jan 07-Jul 14
Amazon Electronics [43] 420M x 476 K 7.82M  Dec 98-Jul 14
Amazon Grocery [43] 763K x 165K  1.29M Jan 07-Jul 14
Amazon mix category [44] 1.08M x 726K 2.72M  Jan 04-Jun 06
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TABLE 4
Experimental Results on Real Data with Injected Labels
Data metrics* source nodes sink nodes
Name M-Zoom  D-Cube  CrossSpot HS M-Zoom  D-Cube  CrossSpot HS
BeerAdvocate auc 0.7280 0.7353 0.2259 0.9758 0.6221 0.6454 0.1295 0.9945
F>90% 0.5000 0.5000 - 0.0333 0.5000 0.5000 - 0.0333
Yelp auc 0.9019 0.9137 0.9916 0.9925 0.9709 0.8863 0.0415 0.9950
F>90% 0.2500 0.2000 0.0200 0.0143 0.0250 1.0000 - 0.0100
Amazon auc 0.9246 0.8042 0.0169 0.9691 0.9279 0.8810 0.0515 0.9823
Phone & Acc F>90% 0.1667 0.5000 - 0.02001 0.1429 0.1000 - 0.02007
Amazon auc 0.9141 09117 0.0009 0.9250 0.9142 0.7868 0.0301 0.9385
Electronics F>90% 0.2000 0.1250 - 0.1000 0.1000 0.5000 - 0.1250
Amazon auc 0.8998 0.8428 0.0058 0.9250 0.8756 0.8241 0.0200 0.9621
Grocery F>90% 0.1667 0.5000 - 0.1000 0.1250 0.2500 - 0.1000
Amazon auc 0.9001 0.8490 0.5747 0.9922 0.9937 0.9346 0.0157 0.9950
mix category F>90% 0.2500 0.5000 0.20007 0.0167 0.0100 0.2000 - 0.0100

* We use the two metrics: the area under the curve (abbrev as lower-case “auc”) of the accuracy curve as drawn in Fig. 1b, and the lowest detection density that

the method can detect with high accuracy (F measure > 90%).
T One of the above fraudulent densities not detected with high accuracy.

suspiciousness cores in POW, may cancel each other, if some
score is not striking and has a very low value closed to 0.

4.2 Evaluation of Different Injection Density

In these experiments, we mimic the fraudsters’ behaviors
and randomly choose 200 objects with in-degree no more
than 100 as the fraudsters’ customers, since less popular
objects are more susceptible to manipulation. Since all user
accounts have a risk to be hijacked as fraudulent accounts,
we then uniformly choose a number of users as controlled
accounts by fraudsters from the whole user set. We ran-
domly inject 200 x 200 = 40, 000 fraudulent edges between
the fraudulent accounts and the 200 target objects, ensuring
that each target object receives 200 ratings as imaginary cus-
tomers required. And to make the fraudulent accounts
behave as the ordinaries, the camouflage edges are also ran-
domly injected to the other objects biased to the popular
ones, with the same amount of fraudulent edges [6].

To test on different fraudulent densities, the number of
fraudulent accounts are from 200 to 20,000. As a results, the
fraudulent density ranges from 1.0 to 0.01 for testing.

To mimic the surge of fraudsters’ attacks, we generate
the rating time for each fraudulent edge. First, find the earli-
est time ¢; and latest time ¢. of the original edges in data,
and collect the intervals of edge creation time for an object,
as set C. Second, randomly choose a start time ¢ between ¢
and ¢.. Third, add to ¢ a randomly and biased time interval
sampled from C, and assign it to a fraudulent edge. Shorter
intervals have higher probability, since fraudsters would
like to attacks in a high frequency.

In addition, a biased rating score, e.g., 4 or 4.5, is ran-
domly chosen for a fraudulent edge.*

Fig. 1a shows the results of HS-o on the BeerAdvocate
data, compared with Fraudar and SpokEn which consider
only topology information as HS-o does. To detect fraud-
sters of a low density is much harder than those of a high
density, so the better methods are able to detect fraudsters
of lower density with high accuracy. Since HS-« considers

4. The injection code is also open-sourced for reproducibility:
https:// github.com/shenghua-liu/HoloScope

only the topology information in our novel contrast suspi-
ciousness, we compare HS-o with the baselines based on
graph topology. When the fraudulent density decreases
from the right to the left along the horizontal axis, HS-« can
detect fraudulent density as low as 0.125 in a high F-mea-
sure, much better than 0.8 which is the best of the baselines.

Fig. 1b shows the results of HoloScope HS, which uses
topology, temporal, and rating attributes. Compared to
those baselines on the same kinds of attributes, HS can keep
as high an F-measure as more than 90 percent of them
before reaching 0.033 in density, better by far than the base-
line methods (0.50 in density). In other words, if the same
amount of fraudulent edges is present, HS can detect fraud
with high accuracy even when fraudsters use 6,000 source
nodes (user accounts). On the other hand, the best of the
baselines detects fraud with a low level of accuracy (less
than 50 percent), even when only 600 fraudulent accounts
attacked, which is easier to detect by HS. Besides, HS using
several signals further improves over HS-a with only the
topology signal (compared with Fig. 1a) by decreasing den-
sity from 0.125 to 0.033 with high detection accuracy.

We compare the baselines on all six datasets with differ-
ent injection density, and propose to use two metrics: a
lower-case “auc” and the lowest detection density, as
described in the notes of Table 4. The table reports the fraud
detection results of our HoloScope and the baselines on the
six datasets. Since the accuracy curve stops at 0.01 (the mini-
mum testing density), and since we add zero accuracy at
zero density, the ideal value of auc is 0.995. The auc on
source and sink nodes are reported separately. In terms of
sink nodes, HS outputs the rank list by suspiciousness
scores. We use the area under the upper-case AUC (similar
to F-measure) accuracy curve along all testing density. As
the table suggests, our HS achieved the best auc among the
baselines, and it even reached the ideal auc in two cases.

Furthermore, we compare the lowest detection density in
Table 4. The better a method is, the lower density it should
be able to detect well. As we can see, HS has the smallest
detection density in most cases, which can be as small as
200/14000 = 0.0143 on source nodes, and it reached the mini-
mum testing density of 0.01 on sink nodes. That means that
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Fig. 9. HS with holistic signals has high detection accuracy for the low
fraudulent density. HS with two signals achieves very close perfor-
mance, but missing 30 of 6,000 fraudulent accounts. Default b is used.

we can detect fraudsters with high accuracy even when they
use 14,000 accounts to create fake edges for each of 200
objects, due to the holistic use of signals in the contrast sus-
piciousness framework. The fraudulent objects can also be
detected accurately.

4.3 Evaluation on Sina Weibo with Real Labels
We also performed experiments on a large real dataset from
Sina Weibo, which had 2.75 million users, 8.08 million mes-
sages, and 50.1 million edges in Dec 2013. The user names
and IDs, and the message IDs are from the online system.
Thus we can check their existence status in the system to
evaluate the experiments. If the messages or the users were
deleted from the system, we treat them as the basis for iden-
tifying suspicious users and messages. It is impossible to
check all of the users and messages, so we first collected a
candidate set, which is the union of the output sets from the
HS and the baseline methods. The real labels are examined
in the candidate set by checking their status as to whether
they still existed in Sina Weibo (checked in February 2017,
i.e. more than 3 years later). If the users or messages cannot
be accessed, then we label them as suspicious nodes, since
they were probably removed by the operation team from
Sina Weibo. We used a program on the API service of Sina
Weibo to check the candidate user and message ID lists,
resulting in 3,957 labeled users and 1,615 labeled messages.
The experimental results in Fig. 1c show that HS
achieved a high F-measure on accuracy, which detected
3,781 labeled users, higher than M-Zoom’s 1,963 labeled
users. The F-measure of HS was about 30 and 60 percent
higher than M-Zoom and D-Cube, respectively. CrossSpot
was biased to include a large amount of users (> 500, 000)
in its detection results, which recalled fewer than 150 extra
labeled users, getting a very low F-measure, less than 1.5
percent. In terms of messages, HS achieved around 0.8 in
AUC from the ranking list of the results, while M-Zoom
and D-Cube attained lower recall and CrossSpot still suf-
fered from a very low F-measure with many false positive
messages. Therefore, our HoloScope outperformed the
baselines on real-labeled data as well.

4.4 Effectiveness of Combining Multiple Signals

Fig. 9 illustrates the results of HS-o using only topology
information, HS (topology, temporal spike) using topology
and temporal signals, and HS using of three signals on Beer-
Advocate data. Default scaling base b is used for the above
three cases. We can see that HS improves the performance
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of HS-«a by retaining a high detection accuracy (> 0.92) up
to a very low fraudulent density (0.033), whereas HS-«
results in a very low accuracy (< 0.20) when the density is
no more than 0.111. Besides, HS combining two signals of
topology and temporal spikes (black-star line) improves the
performance close to the best one reported (HS, red-triangle
line), yet missing 30 of 6,000 fraudsters. Therefore, with our
uniform metric contrast suspiciousness, the combination of
multiple signals improves the performance of fraud detec-
tion over using one signal or two signals.

4.5 Scalability

To verify the complexity, we choose two representative
datasets: BeerAdvocate data, which has the highest volume
density, and Amazon Electronics, which has the most edges.
We truncated the BeerAdvocate data according to different
time ranges, from Jan 2012, Jan 2011, ..., Oct 2004 to Nov
2011. We then ran our algorithm on each resulting dataset.
The larger Amazon Electronics data was also tested, trun-
cated by ranges from Dec 1998, Jan 2003, Jan 2005, ... , Mar
and Jun 2014 to Jul 2014. Our algorithm was implemented
in Python, and ran in a single node with 256G memory, and
26 Cores and 2.00 GHz Intel Xeon CPU E7. As shown in
Fig. 2, the running time of our algorithm increased almost
linearly with the number of the edges.

5 DiScusSION AND CONCLUSION

We now address several questions about the HoloScope
method.

Q1. Could fraudsters slow down the rate of creating fraudulent
edges to avoid spikes? Although it is technically easy for
fraudsters to reduce their pace to create edges, the total time
cost may not be acceptable due to the requirement of a large
amount of edges from fraudulent objects. For example, in
Twitter, if a message is retweeted fewer than thousands or
tens of thousands of times in one day, people may not pay
attention to it. Moreover, if creating fake ratings takes a
long time, the fraudsters’ operating costs of hiring people
and maintaining accounts and IPs will be dramatically
increased. Therefore, if a fraud detection algorithm like
HoloScope can provide a robust temporal obstruction for
fraudulent edge creation, fraudsters may give up due to the
high cost involved.

Q2. Isn’t there a danger of a post from an ordinary user that
goes viral? HoloScope is based on block detection; that is, a
group of suspicious users are connected to a group of suspi-
cious objects, instead of an individual post or user. More-
over, the novel idea of examining contrast suspiciousness,
instead of the speed by which a post becomes popular or
large degree, considers the ratio of suspicious users partici-
pating in bursting periods or the total degree. Contrast sus-
piciousness is dynamically calculated based on current
suspicious users in Algorithm 3. An intuitive way to see the
result is that HS-o detects objects with suspicious high
degrees in the top left corner of Fig. 4a, and avoids the ordi-
nary popular (high-degree) objects in the hyperbolic area.

Q3. Is the algorithm sensitive to camouflage? Generally
speaking, our algorithm can reduce the effects of camou-
flage connections that are created to normal objects by
fraudsters. Since the contrast suspiciousness P(v|A) will be
very low for popular objects, objective (3) will not be
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decreased much by adding small numbers to both the
numerator and the denominator of the objective. In addi-
tion, by connecting to a large number of low-popularity
objects, our objective value may greatly decrease.

Moreover, in the future, we expect to see improvement of
the performance, by introducing more properties into our
HoloScope, such as the text of reviews, and even the psy-
chological elements of deceptive reviews [45].

In conclusion, we have proposed a contrast metric for
fraud detection in attributed and bipartite graphs. Holo-
Scope has the following advantages: 1) Novel suspiciousness
metric: With contrast metric, our HoloScope emphasizes the
contrast in behavior between fraudsters and honest users in
terms of topology, temporal spikes, and rating deviation.
2) Robustness and theoretical analysis of fraudsters” obstruction:
We showed that if the fraudsters use less than a lower bound
of time to rate an object, they will cause a suspicious drop or
burst. HoloScope can obstruct fraudsters and increases their
time cost. 3) Effectiveness: We achieved higher accuracy on
both semi-real and real datasets than the baselines. 4) Scal-
ability. The algorithm is scalable and runs in near linear num-
ber of edges. At last, HoloScope is open-sourced.
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