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Interrelated Dense Pattern Detection
in Multilayer Networks

Wenjie Feng , Li Wang , Bryan Hooi , See Kiong Ng , and Shenghua Liu

Abstract—Given a heterogeneous multilayer network with vari-
ous connections in pharmacology, how can we detect components
with intensive interactions and strong dependencies? Can we accu-
rately capture suspicious groups in a multi-lot transaction network
under camouflage? These challenges related to dense subgraph
detection have been extensively studied in simple graphs (such as
bipartite graph, multi-view network) but remain under-explored
on complex networks. Existing methods struggle to effectively
handle the intricate dependencies, let alone accurately identify the
interrelated dense connected patterns within a series of complex
heterogeneous networks. In this paper, we propose INDUEN, a novel
algorithm designed to detect interrelated densest subgraphs in
multilayer networks through joint optimization of coupled factor-
ization and local search for an elaborate-designed joint density
measure. It is (a) effective for both large synthetic and real net-
works, (b) resistant to camouflage for anomaly detection, and (c)
linearly scalable. Experimental results demonstrate that INDUEN
outperforms the state-of-the-art baselines in accurately detecting
interrelated densest subgraphs under various settings. Further-
more, INDUEN uncovers some intriguing patterns in real-world
data, i.e., closely cooperated academic groups and interrelated
dependent functional components in biology-net. INDUEN achieves
more than 35× speedup compared to the SOTA method DESTINE.

Index Terms—Multilayer network, dense subgraph detection,
interrelated pattern mining, algorithm design.

I. INTRODUCTION

CONSIDERING a collection of complex networks that rely
upon one another, such as the intricate associations among

genes, chemicals, and various diseases for humans, how can we
detect heterogeneous components with solid interactions and
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mutual dependencies relevant to pharmacology? Also, how can
we capture related party transactions or collusion fraud when
facing elaborate camouflage in a suspicious multi-lot transna-
tional money transfer network for banks?

Prevalent among the various data in the natural, social, and
information sciences are intricate interactions and extensive
interconnections, which leads to complex, heterogeneous, and
multilayer networks [1], [2], including relations among {gene,
protein, phenotype, disease} in life science [3], dependencies of
{molecule, cell, targeted drug} in network pharmacology [4],
and interrelations between {energy-sites, transportation, food-
demand} in a physical society [5], etc. As a common knowledge,
one can gain richer information about structures and knowledge
by fusing different sources and related data simultaneously [6],
[7]. Howbeit, modelling and capturing the high-order depen-
dencies [8] in a complex homogeneous graph is notoriously
challenging or becomes even worse for joint analysis of plenty
of various sources [9].

Dense subgraph detection, aiming to extract tight-connected
nodes from graphs, is a primary task in data mining with nu-
merous applications, such as detecting communities [10] and
spotting fraudulent users/behaviours [9], [11]; finding such in-
tensive, interactive components is also essential for exploring
several properties or detecting interesting patterns in real-world
scenarios. However, most existing researches designed different
algorithms for detecting dense subgraphs [12] but mainly focus
on single graphs [11], [13], [14] or a pair of networks [15],
[16]; others also extend to detecting dense blocks in tensors
to utilize side information [17], [18]. In the case of complex
networks, [19], [20], [21], [22] can find some dense patterns
w.r.t. expert-designed motifs or communities in heterogeneous
networks; almost all existing research [12], [23], [24], [25] that
claims to work on multilayer networks is actually multi-view
networks, which is just a simplified form that includes different
types of edges over the same set of vertices, and they cannot be
extended to more complex graphs where nodes and edges are
heterogeneous. As far as we know, DESTINE [26] is the only one
currently available that can indeed detect dense subgraphs in
a multilayer network by considering cross-layer dependencies,
while it is neither memory-efficient nor efficient for large net-
works and without an interrelation guarantee for the detected
subgraphs. Hence, general and efficient dense pattern detection
in heterogeneous multilayer networks remains a great challenge.

Moreover, in various real applications, e.g., social networks
and marketing campaigns, we are not only concerned about
the connections within a subgraph component but are more
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Fig. 1. A toy example of a multilayer network of {Gene, Disease, Chemical}
in bio-medicine, where links of within-layer denote similarities (solid lines) and
of cross-layers are ‘which chemical-cures-which disease’, ‘which gene-related
to- which disease’ (dashed lines). The subgraph marked with red constitutes the
‘interrelated dense subgraph’ with higher density when considering all links,
while the subgraphs marked with green correspond to some ‘near-free’ dense
subgraphs for all layers for very few inter-layer links between them.

inclined to detect components with strong interrelationships
if they are interdependent. Such interrelated dense subgraphs
benefit to study strong complex relationships and downstream
tasks, e.g., targeted drug research & development and effective
therapies, while near-free dense subgraphs in each within-layer
only reflect the great similarities of the local structure inside it
but cannot reflect interactions or dependencies between different
entities. Considering a multilayer bio-medicine network for the
relationship among {Gene, Disease, Chemical} in Fig. 1, it
contains useful interrelated dense subgraph patterns with strong
dependencies among all types of nodes in three layers.

To this end, we propose INDUEN, a novel approach for the
interrelated densest subgraphs detection (IDSD) in a multilayer
network. INDUEN is a flexible framework with configurable
components, and it adopts coupled factorization to maintain
intricate dependencies. Our algorithm consistently optimizes
the objective by virtue of a joint of continuous and discrete
optimization with a guaranteed convergence in theory. Resort-
ing to the elaborate-designed density measure and algorithm
design, INDUEN becomes highly efficient, effective for the IDSD
task, and resistant to camouflage attacks. In addition, INDUEN

outperforms baselines for both synthetic and real networks; it
uncovers various intriguing patterns in real-world data, e.g.,
close cooperation relations in academic groups and different
interrelated functional components in biological networks. In
addition, INDUEN is scalable, with near-linear runtime in the
number of non-zeros of a network, and achieves more than 35×
speedup compared to the SOTA approach DESTINE.

In summary, our main contributions are as follows:
� Problem Formulations: We formulate the interrelated

dense subgraph detection problem in multipartite graphs
and multilayer networks, and design an effective density
metric adapted to the case.

� Algorithm and Analysis: We propose INDUEN, a fast and
effective approach for the IDSD problems, and analyse its
optimization convergence and complexity.

� Evaluations: We conduct extensive experiments to verify
the efficiency, effectiveness, and linear scalability of
INDUEN. It can also find intriguing and valuable patterns
across various real application scenarios.

Reproducibility: Code, datasets, and supplementary for proofs
and more experimental results are available online.1

II. RELATED WORK

A. Multilayer Networks

Rich cross-domain interactions induce extensive research
for complex networks, including inter-dependent, multi-modal,
multiplex, multi-view, multidimensional, multilayer, etc. We
refer interested readers to the comprehensive survey [1] for
detailed information and their differences. Chen et al. [7], [25]
proposed MULAN to model the intricate dependencies among
layers in multilayer networks. NONCLUS [27] clusters multiple
domain-specific networks, utilizing non-negative matrix factor-
ization. Also, multilayer networks have various applications,
such as biomedicine [3], biological [4], [28], and human be-
haviour [29], etc.

B. Dense Subgraph Detection (DSD)

The detection of dense subgraphs has been extensively stud-
ied [12], [30], [31]. Finding the densest subgraphs is polynomial-
time solvable with linear programming [13] or maximum flow
algorithms [32]. Instead of detecting the exact densest subgraph,
Greedy algorithms give solutions within a 1/2 factor of opti-
mum [33], [34]. These methods have been applied to detect
community structure [10], [35], protein complexes [36], and
anomaly [11], [37], e.g., follower-buying service [11], ill-gotten
“likes” on Facebook [38], and money laundering of transaction
flows [9], [39]. It has been extended to detect dense blocks
in multidimensional data (tensor) [17], [18], [40], [41], which
actually correspond to multi-view graph — one special type of
multilayer network.

Beyond the single graph, detecting dense components in
multiple graphs aims to leverage the rich side information
(i.e., attributes). [42] maximized the minimum density of a
subgraph sharing the same vertex set. [9] extended Greedy
algorithm for detecting dense patterns as suspicious users in
a multipartite graph. [43] proposed to find the densest con-
nected subgraph in dual networks, where the subgraph needs
to be connected in the physical network and has the largest
density in the conceptual network. [44] proposed using core
decomposition to discover the densest subgraphs in multi-
view networks. [45] introduced a method that enforces k-edge-
connectivity constraints on one graph while detecting dense
components in another. [16] puts forth the generalized dens-
est subgraph problem and designed a unified SPECGREEDY

by leveraging the spectral graph properties to detect dense
subgraphs.

Based on the most recent exhaustive survey [12], almost all
works focus on detecting dense subgraphs on the multi-view
graph with some edge sets encoding different types of con-
nections and/or time-dependent connections over the same set
of vertices.DESTINE [26] focuses on dense subgraph discovery

1http://github.com/wenchieh/induen.
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in an actual multilayer network by considering the cross-layer
dependencies and optimizes a non-strictly convex objective
function based on the projected gradient descent. Another way to
detect the dense subgraph in the multi-graph is based on some
predefined motifs [46] while considering the label of node and
edge, e.g., small clique, k-core, and k-truss; similar patterns
and problems have been widely studied for homogeneous/
bipartite/multi-view/directed/temporal graphs [47], [48], [49]
and heterogeneous information networks [22], [50]. Also, [19],
[20] studies the DSD problem in heterogeneous networks to
consider different types of nodes and edges based on expert-
designed meta-paths. The tutorial [51] is a comprehensive survey
for cohesive subgraph mining in heterogeneous information
networks. As we can imagine, it is hard to pre-define proper
motifs or enumerate all motifs, considering the combinations of
different node and edge labels, and it becomes even worse for
complex graphs with more layers and more types of relations.
Those motif-based or meta-path-based methods can only find
some fixed-type connection patterns; however, they cannot count
the different contributions of various kinds of connections or
edge weights (e.g., the similarity and the number of interactions).

Moreover, the dense subgraph detection problem is usually
deemed an unsupervised task, and few works focus on the
subgraph topics [52], [53] but none on the DSD problem.
Zhao et al. [54] try to use some detection results from the
dense subgraph/block detection methods before detecting graph
anomalies with the GNN model.

C. Coupled Factorization

To model the complex interactions in heterogeneous, mul-
tidimensional, and multiple source data, and to perform data
fusion, coupled factorization has been developed significantly,
which can gain insights by sharing the same latent factors.
There are different applications, including recommendation sys-
tems [55], [56], pattern mining [57], forecasting [58], link pre-
diction [59], community detection [60], [61], etc. Acar et al. [62]
proposed CMTF-OPT, a first-order optimization algorithm for
Coupled Matrix-Tensor Factorization. [63] proposed coupled
non-negative matrix factorization for hyper-spectral and multi-
spectral data fusion. TensorCast [58] leveraged coupled tensor-
tensor factorization for forecasting with auxiliary information,
enhancing accuracy and efficiency. [61] found tightly connected
subgroups of nodes that exhibit similar node-specific time series
by the coupled clustering.

III. NOTIONS & PRELIMINARY

We summarize the notions used in the paper, introduce cou-
pled factorization and dense subgraph detection methods.

We use bold uppercase for matrices (e.g., A), bold lowercase
for vectors (e.g., x), normal lowercase for scalars (e.g., a), and
calligraphic letters for sets (e.g., A). For indexing the elements
of a matrix, we follow the Matlab settings. The i-th row of the
matrixA is denoted asA(i, :), the j-th column asA(:, j), and the
(i, j)th entry as A(i, j); A′ denotes the transpose of the matrix
A, and tr(A) denotes the trace of A if it is a square matrix.

TABLE I
SYMBOLS AND DEFINITIONS USED IN THE PAPER

The Frobenius norm of the matrix A is ||A||F , and the L1,1

norm is ||A||1,1 =
∑

i,j |A(i, j)|. We use 0 and J to denote an
all-zero and an all-one matrix, respectively. [K] ≡ {1, . . . ,K}
for brevity. Table I summarizes the main symbols used in the
paper.

A. Multilayer Network & Multipartite Graphs

1) Multilayer Networks: Considering a typical multilayer
network with g layers, we use G to denote the g × g layer-layer
dependencies, G(i, j) = 1 if the j-th layer has links with the
i-th layer, otherwise G(i, j) = 0. Assume the nodeset of the
i-th layer is Vi with size ni > 0, and mi edges between nodes
of Vi forms a homogeneous graph; we use A = {A1, . . . ,Ag}
as a set of g adjacency matrices with Ai ∈ Rni×ni

+ for the
i-th layer, C = {Ci,j ∈ {0, 1}ni×nj |∀ i, j ∈ [g] ∧ i �= j} as the
cross-layers network dependencies, and Ci,j = 0 iff G(i, j) =
0. We denote the number of graphs in the multilayer networks
as N , where N = |A|+ |C|/2. Considering the undirected de-
pendencies, Ci,j(s, t) = 1 if the node s in the i-th layer and the
node t in the j-th layer depend on each other, which naturally
leads to Cj,i(t, s) = 1 as a consequence.

Hence, a multilayer network is denoted as G = (V,A, C,G)
where V = ∪gi=1Vi is the universal nodeset with size |V| =∑g

i=1 ni and |C| ≤ g(g − 1). Besides, we use G(S) to denote
the multilayer subgraph of G derived by a node subset S ⊆ V
and all corresponding connections.

2) Multipartite Graphs: Under the above paradigm, each
non-missing cross-layer matrix Ci,j actually represents a bi-
partite graph if Vi ∩ Vj = ∅, and G is a g-partite graph if {Ai =
0 | ∀Ai ∈ A}, we use Ḡ = (V, ∅, C̄, Ḡ) to denote a g-partite
graph, Ci,i+1 ∈ C̄ is cross-partite connections between the i-th
and next part.

B. Coupled Factorization

For a matrix X ∈ RM×N , matrix decomposition finds the
factor matrices U ∈ RM×K and V ∈ RN×K to minimize
the squared reconstruction error, minU,V ||X−

∑K
i=1 U(:, i) ·

V(:, i)′||2F , with 0 < K 
 N as the number of latent factors.
The optimal solution of this low-rank approximation is given
by the Singular Value Decomposition (SVD) of X based on the
Eckart–Young–Mirsky theorem [64].

To include other related resource data, e.g., profile informa-
tion, for co-analysis and correlated prediction, coupled matrix
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factorization naturally extends the standard matrix decomposi-
tion. The factorization ofX ∈ RM×N coupled withY ∈ RM×T

on the first mode is obtained by minimizing

min
U,V,W

||X−UV′||2F + β||Y −UW′||2F ;

where U ∈ RM×K ,V ∈ RN×K , and W ∈ RT×K , β is the
hyperparameter as the strength of the coupling for the task.

Many techniques have been proposed to solve the above opti-
mization problem, like multiplicative update rules and additive
update rules (e.g., projected SGD) [65].

C. Densest Subgraph Detection (DSD)

Given an undirected graph G = (V, E) with edgeset E , the
commonly used average degree density metric for the DSD
problem is defined as ρ(G) = |E|

|V| . As for detection meth-
ods, the Max-Flow-based algorithm [32] and the LP-based
algorithm [13] can give exact solutions in polynomial time.
The greedy algorithm [66] is computationally efficient and
has a 1

2 -approximation optimal guarantee, i.e., ρ∗ ≥ 1
2ρopt;

Greedy++ [67] is also a variant. We use MAXFLOWSOLVER and
GREEDYSOLVER to denote these algorithms, respectively.

Besides, given the adjacency matrix A of G, there are some
matrix decomposition based approximate detection methods
(named MF-DSD), including
� EIGENSOLVER: using eigen-decomposition of matrix, A ≈
UΛU′ with Λ = diag(λ1, . . . , λK) as the non-decreasing
top K (
 |V|) eigenvalues.2

� NMFSOLVER: using the symmetric non-negative matrix
decomposition minU≥0 ||AG −U ·U′||2F .

where U ∈ R|V|×K is the top-K decomposition factors.
Considering the fact that vertices with a larger value in the

top decomposition factors manifest their essential contribution
to the graph and usually make up some densely connected
groups, SPOKEN [68] and FBOX [69] utilize such an idea to detect
suspicious behaviour patterns in the graph.

IV. PROBLEM FORMULATIONS

The densest subgraph in a graph is determined by the density
measure in theory, and different forms of density definitions will
derive distinct densest subgraphs.

In contrast to the simple graph, a valid dense subgraph in a
multilayer network should cover all layers as we expect, not
just some of them, and should have strong interconnections
through cross-layer dependencies between nodes of different
layers, rather than being loosely connected. To that end, we
account for the intricate contributions of the within layers and
even more complicated cross-layer dependencies and propose
a flexible density measure for dense subgraphs in a multilayer
network as follows,

Definition 1 (Joint Density): Given a g-layered network G =
(V,A, C,G) and a nodesetS = {Si |Si ⊆ Vi, ∀ i ∈ [g]}, letASi

2If AG ∈ RM×N , SVD is used as A ≈UΣV′, where Σ =
diag(σ1, . . . , σK) is the diagonal matrix of top-K singular values
(non-negative), U ∈ RM×K and V ∈ RN×K .

be the i-th within-layer’s adjacency matrix derived byS andCSi,j
is similar w.r.t. the cross-layer dependencies. ||Ai||1,1 equals
twice the number of edges in the corresponding graph w.r.t. Ai,
||Ci,j ||1,1 is the number of connections in the graph of Ci,j .

Then, we define the joint density of the subgraph G(S) as

ρG(S; γ·) =
g∑

i=1

||ASi ||1,1 +
∑g

j=1 γi,j ·G(i, j) · ||CSi,j ||1,1
2 · |S| ·

g∏
i=1

1(|Si| > 0), (1)

whereγi,j is a preset parameter to balance the importance ofCi,j

w.r.t. the within-layer connections,1(·) is the indicator function.
As for (1), the first part is the sum of γ-weighted average den-

sity involving all connections in the derived multilayer subgraph,
considering both within-layer and cross-layer connections (γ
for different importance); and

∏g
i=1 1(|Si| > 0) as penaliza-

tion to ensure the none-empty of node subset in each layer.
Different γs will lead to distinct densest subgraph structures
because of the different emphasis on within and cross-layers.
We can also naturally define other measures similar to (1) for
multilayer networks based on other commonly used density
measures [12], [70], e.g., edge ratio, triangle density, and triangle
ratio, etc.

Furthermore, the majority of current densest subgraph de-
tection methods primarily concentrate on the monopartite or
bipartite graph; how to handle the heterogeneous multilayer
networks is still under-explored. To that end, we propose a
generalized dense subgraph detection problem as,

Problem 1 (Interrelated Densest Subgraph Detection (IDSD)
in Multilayer Networks). Given: a g-layer network G = (V,
A, C,G) and the density measure ρ(·);

Find: a set of nodes S∗ = {S∗i | ∅ � S∗i ⊆ Vi, ∀ i ∈ [g]},
which composes the target interrelated densest subgraph, that
is, S∗ = argmaxS�{Si⊆Vi, ∀ i∈[g]}ρG(S).where ρG(S)measures

the density of the subgraph derived by the subset S over Ḡ.
As we can see, when all cross-layer dependencies are

absent, the network G degenerates into g separate graphs,
{A1, . . . ,Ag}, the DSD problem in this case can be
solved independently, resulting in some unrelated (near-free)
results.

Consider that a good deal of cascade behaviour pattern mining
problem actually corresponds to the densest subgraph detection
in a multipartite graph, e.g., money laundering behaviour detec-
tion in transaction flows [9] and heterogeneous information inte-
gration (i.e., gene-protein-disease in functional genomics [71]).
Hence, we formalise the following problem as the other special
case of Problem 1,

Problem 2 (Densest Subgraph Detection in Multipartite
Graphs). Given: a g-partite graph Ḡ = (V, ∅, C̄, Ḡ) and the
density measure ρ(·);

Find: a set of independent node-sets S̄∗ = {S̄∗i | ∅ � S̄∗i ⊆
Vi, ∀ i ∈ [g]}, which composes the detected connected densest
subgraph, i.e., S̄∗ = argmaxS̄�{S̄i⊆Vi, ∀ i∈[g]}ρḠ(S̄).

Authorized licensed use limited to: National University of Singapore. Downloaded on December 01,2024 at 08:02:54 UTC from IEEE Xplore.  Restrictions apply. 



6466 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 11, NOVEMBER 2024

V. PROPOSED METHODS

A. MF-DSD Over the Aggregated Graph

For a multipartite graph Ĝ with none-overlapping within-
layer nodesets, by treating all nodes equally, even if they could
be heterogeneous, we can represent their connections with an
aggregated big matrix AḠ ∈ R|V|×|V|. The following shows an
example of a three-partite graph AḠ.

AḠ =

⎛
⎝ 0 C1,2

C2,1 0 C2,3

C3,2 0

⎞
⎠ , Ĝ =

⎛
⎜⎝0 1 0

1 0 1

0 1 0

⎞
⎟⎠ .

Similarly, we can use a big symmetric block matrix AG ∈
R|V|×|V| to represent a multilayer network G, where Ci,j as the
off-diagonal submatrices can be a zero-matrix if the correspond-
ing dependency is absent. The following shows an example of
AG for a three-layer network.

AG =

⎛
⎝ A1 C1,2 C1,3

C2,1 A2 C2,3

C3,1 C3,2 A3

⎞
⎠ . (2)

Thus, AG (AḠ) signifies an undirected connected graph.
Superficially, we could detect the dense subgraph over this ag-

gregated graph directly; the detection results given by GREEDY-
SOLVER, MAXFLOWSOLVER, and MF-DSD, however, will be
problematic because they cannot guarantee to satisfy the con-
straints thatS∗i �= ∅ for ∀ i ≤ g and their interrelationship when
the connections are dominated by some partite, some within-
layers, and/or cross-layers. Moreover, detecting the dense sub-
graph over all Ai separately cannot guarantee the subgraphs’
close interrelation between layers, which results in (near) free
dense subgraphs for all layers.

Consequently, all the above approaches and adopted density
metrics cannot be used to find the interrelated dense subgraphs
we expect in a multilayer or multipartite graph.

B. Proposed INDUEN Algorithm

To solve Problems 1–2 efficiently while addressing the above
issues, hereby, we devise a new heuristic algorithm INDUEN,
Interrelated Densest Subgraph Detection on Networks, which
consists of the following three components,

i) Coupled Non-negative Factorization (CONF): the factor-
ization will tie together the within-layer graphs and cross-
layer dependencies and find their best rank-1 factors.

ii) IDSD Detector: we use some efficient detectors to find
the interrelated densest subgraph with the above factors.

iii) Boosting Expander (EXPANDER): we exploit the local
structure by neighbour expansion for the rough results
to boost the fine detection subgraph.

In the following sections, we describe each step in detail and
illustrate the complete algorithm at the end.

1) Coupled Non-Negative Factorization:
a) DSD over Multipartite Graphs: For a g-partite graph

Ḡ, the nodeset Vi is the bridge connecting Ci−1,i and Ci,i+1

for 1 < i < g; and V1 (Vg) is only affiliated with C1,2 (Cg−1,g).
Therefore, let Ui ∈ Rni×K be the factors associated with Vi

for any i ∈ [g], we formulate the coupled factorization for all
Ci,i+1 ∈ C̄ of Ḡ as

min
{Ui,Σi}

g−1∑
i=1

αi · ||Ci,i+1 − Ĉi,i+1||2F

s.t. Ĉi,i+1 = UiΣiU
′
i+1, αi > 0, Σi > 0, ∀ i ∈ [g − 1]

U′jUj = I, Uj ≥ 0, ∀j ∈ [g]. (3)

whereΣi is a positive diagonal matrix andαi > 0 is the hyperpa-
rameter denoting the importance of the i-th reconstruction term
for the corresponding cross-layer dependence. Non-negative
constraints are applied for all factors.

b) IDSD over Multilayer Networks: For a g-layer network
G = (V,A, C,G), the nodeset Vi affiliates with Ai and also
connects with Ci,j if Gi,j = 1 for any j �= i and j ≤ g. Let
Ui ∈ Rni×K be the factors associated withVi for any i ∈ [g], we
formulate the coupled factorization for allAi ∈ A andCi,j ∈ C
as follows,

min
{Ui,Λi,Σi,j}

g∑
i=1

(
||Ai − Âi||2F

+

g∑
j>i

βi,j ||Ci,j − Ĉi,j ||2F
)

subject to Âi = UiΛiU
′
i, Ĉi,j = UiΣi,jU

′
j ,

Ui ≥ 0, U′iUi = I, Λi ≥ 0, Σi,j ≥ 0,

βi,j ≥ 0, ∀ i, j ∈ [g]. (4)

where Λi and Σi,j are non-negative diagonal matrices, βi,j ≥
0 is the hyperparameter to define the importance of the i-th
reconstruction term of the cross-layer dependenciesCi,j . βi,j =
0 means ignoring the dependencies of Ci,j or it is absent. Non-
negative constraints are introduced for all Ui.

Obviously, (4) is more general than (3), and it can handle any
absent of the submatrix ofAG in (2) while taking the constraints
for each layer (partite) into consideration.

In addition, to prevent overfitting and produce sparse low-
rank latent factors, we add the L1,1 regularization in (4), which
leads to

min
{Ui,Λi,Σi,j}

g∑
i=1

⎛
⎝||Ai − Âi||2F +

g∑
j>i

βi,j ||Ci,j − Ĉi,j ||2F

+ λ(||Ui||1,1 + ||Λi||1,1 +
g∑

j>i

||Σi,j ||1,1)
⎞
⎠ ,

(5)

where λ controls the importance of theL1,1 regularization terms,
while other constraints remain as-is.

To prevent the objective function from being overwhelmed
by the reconstruction error of some Ai or Ci,j , i.e., when they
are overly denser or larger than others, we set βi,j as dispersion
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Algorithm 1: CONF: Coupled Non-Negative Factorization
for Multilayer Networks.

parameters [72] by

βi,j =
αi · ||Ai||2F + αj · ||Aj ||2F

(αi + αj) · ||Ci,j ||2F
, (6)

it can be also customized according to the user’s needs.
With the well-studied multiplicative update equations [65],

[73], we find the solution of (4) by iterative updating rule,

Ui ← Ui

⊗
⎛
⎝ ∑g

j=1 βi,jCi,jUjΣi,j + 2AiUiΛi

UiU′i
(∑g

j=1 βi,jCi,jUjΣi,j + 2AiUiΛi

)
+ λJi

⎞
⎠

1
2

,

(7)

and the update of the diagonal matrices Λi and Σi,j as,

Λi ← Λi ⊗
(

U′iAiUi

U′iUiΛiU′iUi + λJK

) 1
2

,

Σi,j ← Σi,j ⊗
(

U′iCi,jUj

U′iUiΣi,jU′jUj + λJK

) 1
2

, (8)

where Ji has the same size as Ui, JK is an all-one K ×K
matrix. They can avoid the denominator being zero during the
iteration updates.

The CONF in Algorithm 1 shows the above factorization
process for the multilayer networks. The updating of those
factors will continue until convergence (Lines 4-9).

2) IDSD Detector:
a) Skewed distribution of values in Factors: As [16]

shows, the scores in eigenvectors and singular vectors of the
adjacency matrix of large real-world graphs are highly skewed
and decreases sharply, which does benefit efficient dense sub-
graph detection in big graphs. Similar properties are also found
in the community, Kronecker graphs, and multiple generative
models in [74], [75], [76]. However, it is unclear whether the
factors of coupled factorization for related graphs follow similar
properties. Hence, we explore the properties of scores of the
factor vectors from real-world multilayer networks.

Algorithm 2: EXPANDER: Neighbor Booster for DSD.

Taking AMINER network for the {author, paper, venue}
relationship as an example, Fig. 2 shows the distributions of
the factorization components from CONF. We can see that the
within-layer connections and cross-layer dependencies of real-
world networks are sparse and have power-law degree distribu-
tions; the score of decomposition factors is also highly-skewed.
Moreover, the distributions of the top diagonal elements of Λs
and Σs are also skewed.

b) Densest Subgraph Detectors: Owing to the cross-layer
dependencies and shared-association constraints during the cou-
pled factorization and their skewed distribution properties, we
can significantly reduce the size of the candidates by truncating
with some thresholds while ensuring the completeness of the
target solution as much as possible. Therefore, we can keep
only those nodes with top-ranked scores in decomposed factors
based on a threshold value, i.e., Δ = 1/√nk

for the factor Uk,

to construct the candidate solution Ŝ = {Ŝ1, . . . , Ŝg} with Ŝk
obtained from Uk. It is worth noting that the size of Ŝ is only
5% ∼ 15% of the original nodeset V in G empirically.

Given a multilayer network G and a candidate nodeset Ŝ ,
let Gi be the graph w.r.t. Ai, we obtain a refined solution by
the following strategies with some DSDSOLVER, which can be
GREEDYSOLVER, MAXFLOWSOLVER, MAXCLIQUESOLVER, and
so on.

1) Layer-By-Layer detection: detect the densest subgraph for
each Gi(Ŝi) and return the merged nodeset.

2) Aggregation detection: detect the densest subgraph over
the aggregated graph w.r.t. {AŜi } ∪ {γi,jCŜi,j} as (2),
where γi,j re-weight the edge of cross-layers.

3) Boosting Expander: Considering the approximation re-
sults from CONF and DSDSOLVER (maybe some approxima-
tion algorithms), we exploit the local structure of the solution
returned by the previous step to boost the result. Algorithm 2
summarises the proposed EXPANDER. It tries to improve the
density by greedily introducing some neighbours that haven’t
been in the current nodeset, until there is no update.

Similar hill climbing and local search approaches, as a type
of discrete optimization technique, have also been widely used
in various graph problems, e.g., subgraph patterns mining [77],
influence maximization [78], anomaly detection [38], etc.

a) Complete Detection Algorithm: Algorithm 3 summa-
rizes the complete structure of INDUEN for interrelated densest
subgraph detection in multilayer networks.
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Fig. 2. Some statistical properties of the multilayer networks (AMINER) are highly skewed. (a)-(b) show the power-law distribution of node degrees based on
the relations from within-layer (coauthor, paper-citation) and cross-layer (‘author-write-paper’, ‘paper-public to-venue’). (c)-(d) show the skewed distributions of
scores in top-10 factors from the non-negative coupled factorization for ‘Author’ and ‘Paper’, respectively. (e)-(f) show the distribution of diagonal elements of Λs
and Σs, resulting from the factorization of within-layer adjacency matrices and cross-layers dependencies.

Algorithm 3: INDUEN: Solving the Optimal IDSD in a
Multilayer Network.

First, INDUEN utilizes CONF to obtain decomposition factors
{U1, . . . ,Ug}. Then, for each rank-1 component Ui(:, k), it
finds a candidate Ŝi and detects the densest subgraph node-
set V′ with a DSDSOLVER based on the candidate solution
Ŝk = {Ŝ1, . . . , Ŝg}; and a refined nodeset V′′ is obtained after
exerting expander-boosting with EXPANDER. Finally, it returns
the nodeset achieving the highest density score as the solution.

C. Optimization Rationale

We reveal the unified framework behind INDUEN for de-
tecting interrelated densest subgraphs by group optimizations:
the coupled decomposition actually finds the approximation
solution for IDSD in the continuous space, which guarantees
the non-emptiness of S∗; DSDSOLVER and EXPANDER refine
the above rough results with discrete optimization.

Theorem 1 (Consistent optimization): Using the edge density
as density metric, the three steps of INDUEN maximize the
subgraph density consistently to solve the IDSD problem.

Proof 1: Given an undirected graph G = (V, E) with the
adjacency matrixA and a nonempty subsetS ⊆ V , let the vector
x ∈ {0, 1}|V| with xi = 1 if i ∈ S , otherwise xi = 0, then the
edge density of the subgraph G(S) is ρG(S) = 1

2 · x
′Ax
x′x =

y′Ay
2 with y = x/

√|S| and ||y||2 = 1.

In the general case, for any non-negative x ∈ R|V|+ , the dens-
est subgraph detection problem in G can be formulated as

max
x∈R|V|+ ,||x||2=1

x′Ax, by optimizing x, and it will lead to an

imperfect solution, i.e.,xi �= 1√
|S∗| or 0, in the continuous space.

Furthermore, we can search for obtaining a realistic solution
as the final nodeset, which corresponds to the discrete space
with other optimization techniques, such as local search, linear
programming, projection, etc.

In terms of the coupled factorization objective function in (4)
for a multilayer network G, that is,

min
{Ui,Λi,Σi,j}

g∑
i=1

‖Ai −UiΛiU
′
i‖2F

+

g∑
i=1

g∑
j>i

βi,j

∥∥Ci,j −UiΣi,jU
′
j

∥∥2
F

s.t.U′iUi = I,Ui ≥ 0,Λi > 0,Σi,j > 0,

βi,j ≥ 0, ∀i, j ∈ [g],

which can be also reformulated as

max
{Ui,Λi,Σi,j}

g∑
i=1

K∑
k=1

Λi(k, k)tr (U
′
i(k, :)AiUi(:, k))

+

g∑
i=1

g∑
j>i

βi,j

K∑
k=1

Σi,j(k, k)tr (U
′
i(k, :)

Ci,jUj(:, k))

−
g∑

j=1

⎛
⎝ K∑

k=1

Λ2
i (k, k) +

g∑
j>i

K∑
k=1

βi,jΣ
2
i,j(k, k)

⎞
⎠ .

In general, the first term tr(U′i(k, :)AiUi(:, k)) aims at finding
the densest subgraph in the i-th within layer based on the k-th
factor Ui(:, k); the second term tr(U′i(k, :)Ci,jUj(:, k)) aims
at finding the densest subgraph in a bipartite graph (cross-layer
dependency) w.r.t Ci,j based on the k-th factors Ui(:, k) and
Uj(:, k). Compared with the single graph case, all the objectives
here are strongly coupled with each other.

Therefore, the decomposed factors from CONF compose K
solutions in the continuous space, as approximations for S∗ for
IDSD problem, it ensures the interrelation between nodeset of
different layers. Constructing candidate nodeset with thresholds
leads to rough solutions in the discrete space and guaran-
tees the non-empty for all Ŝi; DSDSOLVER and EXPANDER,
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as discrete optimizations, refine the results consequently by
improving the density by updating neighbour nodes until
convergence.

Even with other density metrics, decomposed factors from
CONF also provide sets of good approximate solutions since
those dense subgraphs under different density metrics consist of
those nodes with a high score in factors w.h.p.

D. Algorithm Analysis

Here, we analyse the proposed algorithms in terms of their
effectiveness as well as efficiency. All proofs are given in the
supplementary material.

Theorem 2: The fixed points of (7) and (8) satisfy the KKT
condition for their optimality.

The convergence of the CONF is given by Lemma 1.
Lemma 1: The objective functions in (4) and (5) decrease

monotonically under the updating rules in (7), and (8).
Moreover, since βi,j is the coefficient of the term ‖Ci,j −

UiΣi,jU
′
j‖2F in (4) while γi,j is the coefficient of ||Ci,j ||1,1 in

(1), we can initialize βi,j = γ2
i,j for CONF or set γi,j =

√
βi,j

for the density definition to keep it simple.
According to Theorem 2 and Lemma 1, Algorithm 1 con-

verges to a local minimal solution for each decomposed factor.
In terms of efficiency, we analyze the time complexity and

space complexity of the proposed INDUEN algorithm as the
following Theorems 3 and 4.

Given a g-layered network, G = (V,A, C,G), let NNZ =∑
Ai∈A nnz(Ai) +

∑
Ci,j∈C nnz(Ci,j), K be the factoriza-

tion rank, and Ŝ = argmaxk∈[K],Ŝk={Ŝ1,...,Ŝg}|Ŝk|, and use
GREEDYSOLVER as DSDSOLVER.

Theorem 3 (Time Complexity of: INDUEN ) Let T be the
number of iterations in CONF, then the time complexity of
INDUEN is O(T · (NNZ ·K + |V| ·K2) + |Ŝ| log |Ŝ|).

Theorem 4 (Space Complexity of: INDUEN ) The space com-
plexity of INDUEN is O(NNZ+K · (|V|+ g + |C|)).

VI. EXPERIMENT

We design experiments to answer the following questions:
� Effectiveness for IDSD: How accurately does INDUEN

detect interrelated densest subgraphs of different settings?
Does it outperform the state-of-the-art methods?

� Real Pattern Discovery: Does INDUEN discover interre-
lated densest subgraphs in real-world multilayer networks?
And what patterns can be recognized?

� Apply to Anomaly Detection: how is the performance of
INDUEN for the complex anomaly detection tasks?

� Ablation study: How do the components and parameters
influence the detection results of INDUEN?

� Scalability: Is INDUEN scalable with the size of the input
multilayer networks?

We provide detailed information about the dataset and differ-
ent settings, additional experimental results and analysis, and
more case studies in the supplementary.

TABLE II
STATISTICS OF REAL-WORLD DATASETS

A. Datasets

Real-world: We employ various real-world datasets from
different domains as [26], including AMINER and DBLP for
academia (author, paper, venue) [79], BIO for biology (chemi-
cal, gene, and disease) [80], and INFRA-3 [6] for infrastructure
(airport, autonomous system, power grid). The statistics of the
datasets are summarised in Table II.

Synthetic: We build some networks with network generation
models and test whether algorithms can detect the injected dense
subgraphs in each layer of a multilayer network. The 3-layer
networks have a number of nodes (1800, 2400, 3000). Erdős-
Rényi (ER) network is generated with Erdős-Rényi model [81]
where within-layer nodes are connected with probability p.
Scale-Free (SF) network is generated with Barabási-Albert (BA)
preferential attachment model [82] for within-layer links with
the number of edges controlled by parameters m.

We randomly select 10% of nodes in each layer as the
ground-truth nodeset for injected interrelated densest subgraph
and generate links of within-layer and cross-layers with proba-
bilities of pgt and 0.05, respectively; randomly create cross-layer
dependencies of the remaining nodes between layers with a
probability of 0.001.

B. Experimental Setup

Baselines: We compare INDUEN with the following methods,
including Greedy [13] (GREEDYSOLVER), OQC [14], which
detects dense subgraphs by optimizing the edge-surplus den-
sity framework via greedy, COREAPP [83] for efficient dense
subgraph discovery, NMF [84] for maximal clique detection,
FRAUDAR [11] with column-weighting as glog , FlowScope
[9] detecting dense subgraphs in the multipartite graphs, KP-
CORE [21] searching cohesive communities incorporating meta-
path over large heterogeneous information networks (HINs),
and DESTINE [26]. We transform the multilayer network to
a HIN and carefully design the meta-paths for each net-
work.3 All are implemented in Python, but KPCORE in Java.
Except for FlowScope, KPCORE, and DESTINE, we apply
the others, designed only for a single graph, to the multi-
layer networks by Layer-By-Layer detection or Aggregation
detection.

Metrics: F-score is used if the ground truth is available; the
size and density of the detected subgraphs are given.

Machine: All the experiments are performed on a machine
with 2.1 GHz Intel(R) Skylake CPU and 64 GB of RAM.

3The meta-path information: ‘A-P-V-P-A’ for AMINER and DBLP where ‘A’,
‘P’, ‘V’ denote Author, Paper, and Venue resp., ‘C-G-D’ for BIO denotes
‘Chemical’, ‘Gene’, and ‘Disease’ resp., ‘P-AS-A’ for INFRA-3 denoting
‘Power’, ’Autonomous System’, and ‘Airport’, resp.
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Fig. 3. Performance of detecting the injected interrelated dense subgraphs in
the ER, SF, and sub-BIO networks. Here shows the averaged F score of all three
within layers. The method marked with the superscript ‘a’ means the result with
the aggregated graph as input; ‘INDUEN/Exp.’ denotes the variant of INDUEN by
removing the EXPANDER step.

In all experiments, we set K = 10, λ = 10−10, and set βs as
(6) for INDUEN. By default, we adopt the joint density in (1) with
all γi,j being the same value as γ, and choose GREEDYSOLVER

as DSDSOLVER with Aggregation-Detection strategy; γ = 0 is
used when adopting Layer-By-Layer Detection strategy. For
other baselines, the form of (2) is used if taking the aggregated
graph as their input.

C. Effectiveness for IDSD

1) Injection Detection: We test the performance of different
methods for detecting the injected interrelated densest subgraphs
with different injection densities in all multilayer networks.

Networks: We use ER network by setting p = 0.05 to generate
links of all within layers, and SF network with the parameters m
as (40, 60, 80). We also sample a small sub-BIO over real BIO
network for easy-control, which consists of randomly selected
3,000 nodes from each layer while keeping all links associated
with them, and randomly select 300 nodes from each layer as
the target to inject an interrelated dense subgraph where the
cross-layer links of those nodes are generated and reconnected
with probability 0.05 and the density (link probability) of these
targets is pgt.

We inject interrelated densest subgraph with different pgt to
control the density of the ground truth and randomly link the tar-
get nodes, then apply detection methods to these synthetic cases.
γ = 50, 20, 5 for ER, SF, and sub-BIO networks, respectively.

Fig. 3 illustrates the average detection performance for all
layers. We can see that INDUEN consistently achieves the best
performance with F = 1.0, and it has a lower detection den-
sity of the interrelated densest subgraphs, which means it can
accurately find all the nodes forming the dense subgraphs even
if their densities are not so significant, e.g., no more than 0.2.
As a comparison, the results of INDUEN/Exp. verify that EX-
PANDER can do help to improve the detection results, especially
when facing low injection densities. The performance of most
baselines becomes better with the increase in injection density.

For the ER network in Fig. 3(a), DESTINE can only detect the
target with a density higher than 0.25; MF-DSD achieves little
better results than FRAUDAR; OQC’s performance is independent
of the injection density; the results of FRAUDAR and MF-DSD for
the aggregation graph are worse than adopting Layer-By-Layer
detection strategy.

For the SF network in Fig. 3(b), INDUEN achieves complete
detection even with ≤ 0.1 injection density; INDUEN/Exp. has
imperfect detection (nearly similar F ≈ 0.6) for each layer,
which justifies that EXPANDER boosts the performance by im-
proving the recall. The behaviour of FRAUDAR a is interesting in
that its performance drops when the injection density is larger
than 0.6, and it also outperforms FRAUDAR when the injection
density falls in (0.4, 0.6]; Greedy has better performance only
when the density exceeds 0.4; the detection result of DESTINE

for each layer hardly changes with the increase of the injection
density, leading to a stable F score.

For the sub-BIO network in Fig. 3(c), FRAUDAR a achieves
good performance and can detect subgraphs with a lower density
than FRAUDAR; hence, FRAUDAR is sensitive to the type of base
networks. MF-DSD a is also better than MF-DSD but slightly
worse than FRAUDAR a; the opposite is true for OQC, which
is superior to OQC a; their results are better than those in ER
network. Overall, DESTINE does not have a significant advantage
over others in both cases.

In conclusion, INDUEN can deal with and be insensitive to
different types of networks, while other baselines have infe-
rior performance and are influenced by the underlying graphs.
Besides, we also compared the performance for detecting the
injected cliques in the ER and SF networks following the same
setting as DESTINE, and it also turns out that INDUEN signifi-
cantly outperforms all other baselines. See the details and more
results in the supplementary.

2) IDSD for Real Networks: For the detected multilayer sub-
graph G, we denote the volume density as ρi =

||Ai||1,1
ni·(ni−1) for the

ith within layer, and as ρi,j =
||Ci,j ||1,1
ni·nj

for the Ci,j cross-layer
dependencies. Without ground truth, we define different density
metrics to measure the detected subgraph G concerning the
properties of interrelated densest subgraphs.

dmin(G) = min {{ρi} ∪ {ρi,j} | ∀i, j ∈ [g]} ,

dgeo(G) =

⎛
⎝ g∏

i=1

ρi ·
g∏

j>i

ρi,j

⎞
⎠

1/N

,

dari(G) =

∑g
i=1 ρi +

∑g
j>i ρi,j

N
.

Analysis: Different formulations of the above metrics corre-
spond to different ways of working and contributions of within-
and cross-layers. For min-volume density dmin, it focuses on the
volume-based density and reports the minimum by considering
the within- and cross-layer connections; the unrelated subgraphs
will result in dmin = 0 and interrelated dense subgraphs with
higher density lead to a larger dmin. For geometric mean density
dgeo, non-correlation (even higher density) or any empty set
results in dgeo = 0; the higher value of dgeo, the better the result.
For arithmetic mean density dari, it counts the mean of layer-
wise densities (within- and cross-layers contribute equally); a
large dari indicates a large overall density of subgraphs but with-
out a guarantee for the density of each layer. In contrast, a larger
value of dgeo ensures higher density of subgraphs in each layer.

Table III shows the results of different methods over INFRA-
3. It reports the size of the nodeset in each layer (i.e., |Si|)
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Fig. 4. Detected real interrelated densest subgraph patterns in the DBLP (Left) and BIO networks (Right), respectively. (a) shows the detected interrelated dense
subgraph from INDUEN. (b) gives an example of a near-free dense subgraph detected of DESTINE (i.e., with Layer-By-Layer detection strategy), which could be
deemed as camouflaged. (c)-(d) are the results of INDUEN with different γs in joint density metric of (1).

TABLE III
COMPARISON OF THE QUALITY OF DETECTION ON INFRA-3

and defined density metrics. We can see that dmin = dgeo = 0
but dari > 0 for OQC, FRAUDAR, MF-DSD, Greedy, COREAPP,
and KPCORE, since they detect at least one free dense subgraph
for some layers, i.e., ∃CSi,j = 0; COREAPP a attains the best
score considering the dmin. Even with the same elaborated meta-
path as the original work [21], KPCORE can only identify some
k-core (cohesive subgraph) in some single layer of the HIN,
which is also consistent with the results in the original paper
and fails to address our problem. DESTINE and those taking in
the Aggregated graph as input get non-zero metric values. Our
INDUEN with γ = 0.001 achieves the best scores (dgeo and dari)
for the interrelated densest subgraph; it has the same result as
FRAUDAR a if γ = 1 (ignored in the table).

Table IV demonstrates the results over AMINER, DBLP,
and BIO datasets; the basic conclusion is similar to Table III.
INDUEN achieves the best dmin and dgeo for three networks,
and its dari is also the best for BIO. Although some baselines
achieve the best dari, the whole detected subgraphs are still
uncorrelated (at least one free dense subgraph) makingdgeo = 0.
Moreover, dmin = dgeo = 0 but dari > 0 for OQC, FRAUDAR,
Greedy, COREAPP, and KPCORE for all networks; MF-DSD can
detect some interrelated subgraphs, but it is not the best. Using
the Aggregation graph for OQC and FRAUDAR even deteriorates
their performance, resulting from domination by some layers,
but it also makes MF-DSD detect larger-size subgraphs for
AMINER and DBLP.

Therefore, INDUEN, under the proposed joint density metric,
achieves the consistent best performance over different real
datasets, and dari cannot well-suit to measure the interrelated
dense subgraph settings. Note that γs of those networks have a
great difference and depend on the density and structure of the
network. The optimal result of INDUEN is robust to γ, as verified
in the following section.

D. Real-World Pattern Discovery

In this section, we show that INDUEN finds some interesting
patterns corresponding to the interrelated densest subgraphs in
real-world networks. The γ is given in the caption.

Academic Networks: As shown in Fig. 4(a), the interrelated
densest subgraph denotes 18 closely-cooperated authors pub-
lished 56 papers on Database field (VLDB, VLDB Journal,
PODS, and SIGMOD). The within-layer connections denote
co-authorship & venues-citation and the cross-layer links are
intensively dense, while the citations between papers are rela-
tively sparse due to data limitations. Thus, we can infer with
high confidence that the research interests of those authors
should also focus on the Database Field, which is confirmed
by manual verification, i.e., these authors include A Silberschatz,
Yuri Breitbart, and Arun N. Swami, etc. Also, we obtain the same
results for any γ ∈ [10, 1e8].

As teaching material by a negative example, Fig. 4(b) shows
the result of INDUEN with Layer-By-Layer detection (as DES-
TINE). Those authors were from the Stanford University Info-
Lab and formed a small clique for cooperation; these venues
had strong mutual references while being more diverse, though
related to Database and Data Mining. There were very limited
cross-layer dependencies, and we could not figure out the strong
cooperation relationship among authors just based on the limited
co-authored papers. These dense subgraphs in each within-layer
are almost free and independent, which can be deemed as
camouflage similar to Section VI-E1.

Bio-Networks Fig. 4(c)–(d) shows the detected results w.r.t.
different γs in joint density as (1), which controls the final
patterns and depends on user’s preference. A small γ tends to
find the interrelated densese subgraphs with higher within-layer
density, while a large γ will emphasize the importance of the

Authorized licensed use limited to: National University of Singapore. Downloaded on December 01,2024 at 08:02:54 UTC from IEEE Xplore.  Restrictions apply. 



6472 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 11, NOVEMBER 2024

TABLE IV
COMPARISON OF THE QUALITY OF DETECTION ON REAL-WORLD NETWORKS

cross-layer dependencies more, leading to some dense compo-
nents very close to multipartite graphs.

The interrelated densest subgraph in Fig. 4(c) has high within-
layer densities and cross-layer dependencies. The pattern of
chemical interactions is also interesting, since some of them
are densely interconnected while others are densely connected
to other layers. It reveals that different chemical elements act
on different diseases, while genes with high similarity will
be influenced by many different chemical elements. Also, the
pattern in Fig. 4(d) shows sparse and loose internal connections
but dense cross-layer dependencies, which means that some un-
related chemical elements work together to influence dissimilar
gene expression and cure some diseases; while there are few
connections between these genes and diseases.

E. Apply to Anomaly Detection

Consider real applications in anomaly detection for dense
subgraph pattern [11], [68], [69], to evade detection, smart
fraudsters will camouflage themselves by trying to ‘look normal’
via adding links to non-target objects [11]. We apply INDUEN to
the challenging task and verify its robustness under camouflage
for the multilayer and multipartite networks.

1) Multilayer Networks: Here, we deem those freely dense
subgraphs in each within layer graph as camouflages, i.e.,
their densities (connection probability) of within-layer may be
not less than those of corresponding target interrelated dense
subgraph (true anomalies), while the densities of cross-layers
are less than the densities of true anomalies. Using the same
setting as Section VI-C1 for the ER network, we randomly
select the other 10% of nodes (no overlapping with the target
injection) in each layer as the nodeset for camouflaging, generate
the within-layer random connection with link-probability pcam
while keeping their original cross-layers’ links as is. Thus, the
target injected anomalies correspond to an interrelated densest
subgraph which has higher cross-layer dependencies (similar or
lower within-layer density) than the camouflages.

In Table V, we show the detection performance with the
change of pgt of the injected interrelated dense subgraphs
under pcam = 1.0. INDUEN with γ = 15 can perfectly detect
the injected anomalies in each layer even for a lower density;
and EXPANDER works prominently at higher injection densities.

TABLE V
F SCORES ON ER NETWORK WITH DIFFERENT INJECTION DENSITIES UNDER

CAMOUFLAGE (pcam = 1.0). γ = 15 FOR INDUEN

However, DESTINE cannot detect the target until pgt ≥ 0.4 and
fails to distinguish between the camouflages and targets, which
results in a low precision = 0.5 and F-score = 0.67. Only
MF-DSD a detects few targets in the 3rd layer when pgt = 0.6
and other baselines do not find anything. The reason for the
different performances of MF-DSD for different layers is that
the larger the within-layer graph, the higher the average degree of
the targets and the easier to be detected, when pgts are the same.
Compared to Fig. 3(a), INDUEN works robustly and efficiently
and able to resist strong camouflage, while that is not true for
DESTINE.

2) Multipartite Graphs: We build a 3-partite graph based
on the BIO network, named as BIO-MPG, by extracting the
chemical-gene association, gene-gene similarity, and gene-
disease association as it is; and non-rigorously use gene-gene
similarity as one of the partite. To construct the target dense
subgraph as ground truth, we randomly select 300 nodes from
each layer of chemical, gene, and disease, and create random
connections between them by controlling the injection density.
We also randomly select another 500 different nodes from the
gene set and simply reset the similarity between them as 1.0,
which forms a 500× 500 clique in the 2nd partite serving as
strong camouflage. We report F scores of these three nodesets
of each method’s detection to measure their performance.

As shown in Fig. 5, INDUEN consistently achieves the best
performance for all partites and keeps stable. FRAUDAR can
well detect the anomalies in the 1st and 3rd partites, which
follows our expectations since it works in the Layer-By-Layer
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Fig. 5. Performance of detecting the injected anomalies under camouflage
settings over a multipartite graph, BIO-MPG. (a)-(c) show the result for each
partite, and (d) corresponds to the average result over all partites.

Fig. 6. The size of nodeset and density (joint density ρG(S) and average de-
gree density of each layer) after each step (CONF, DSDSOLVER, and EXPANDER)
in INDUEN for AMINER (L) and BIO (R) networks in Table IV.

way and there is no camouflage in these two partites; while
its performance drops in the 2nd partite (with recall = 1.0 but
precision = 3

8 )) due to the influence of camouflage. Meanwhile,
FRAUDAR a fails to detect any target since the aggregated graph
is dominated by camouflage. In addition, although specifically
designed for anomaly detection in multipartite graphs, FlowS-
cope, as the state-of-the-art approach to detect densest subgraphs
in multipartite graphs, also does not resist the camouflage, it can
only find a small portion of inject anomalies, resulting in low
F-scores.

Besides, it shows that changing the density of camouflage-
dense subgraph has no great influence on the results.

F. Ablation Study

1) Algorithm Steps: Fig. 6 shows the size of nodeset and
density of subgraph after CONF, DSDSOLVER, and EXPANDER

TABLE VI
F SCORES ON ER NETWORK WITH DIFFERENT DENSITY HYPERPARAMETER γS

Fig. 7. Performance under vary parameter configurations (γ andK). (a) shows
the averaged F score over 3 layers; (b) gives the Kopt, i.e., the minimum
(optimal) rank K that INDUEN figures out the optimal solution.

in INDUEN, over AMINER and BIO networks w.r.t. the configu-
ration in Table IV.

Compared with the original network, CONF significantly
reduces the size by filtering out a large portion of nodes (note that
the log scale), leading to speedup for DSD; DSDSOLVER gets a
very small graph for each layer in greedy; EXPANDER introduces
a few neighbours to expand the nodeset (for ANIMER), which
will improve the final performance. In terms of density, by
considering the contribution of links of both within and cross
layers, all those steps of INDUEN consistently optimize the
joint density and get better results, but this does not guarantee
that the average degree density of each layer is continuously
increasing (e.g., 3rd layer of AMINER), due to the difference in
the optimization objective.

2) Parameter Sensitivity Analysis: We apply INDUEN to de-
tect the injected interrelated densest subgraph over the synthetic
ER network, whose injection density is set as pgt = 0.50. We
verify the detection robustness of INDUEN w.r.t. density hyper-
parameter γs, and other parameter analysis, including the rank
K, βs, and λ. To simplify the settings, we set γi,j = γ, βi,j = β.

Table VI reports the F scores of INDUEN for different γs
with K = 10. It can perfectly detect the targets with F = 1.0
for all layers when γ ≥ 5.0; and it might detects all targets in
some layer (3rd or 2nd) for a lower γ but not for all layers,
e.g., γ ∈ [0.7, 1.0]. Therefore, the optimal γ vary for different
layers. In addition, the F score of non-perfect detection and value
of γ depend on the randomness from the factor initialization
in Algorithm 1 and the dense subgraphs injection; a lager γ
guarantees a good result, e.g., γ ≥ 5.

Fig. 7 shows the INDUEN performance for different K and γ.
The conclusion about averaged F score in Fig. 7(a) is consistent
with Table VI and K = 10 is enough for perfect detection; Kopt

becomes smaller for larger γs andKopt = 0/1 (the first / second
rank) even for γ ≥ 5.
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Fig. 8. Linear scalability of INDUEN and CONF to the total number of links
in the multilayer network, i.e.,

∑
i
Ai +

∑
i,j

Ci,j . In comparison, the total
running time of the SOTA method DESTINE is shown in (b).

INDUEN consistently achieves F = 1.0 for λ ∈ [10−10, 10−5]
and β ∈ [0, 50] (The table is ignored due to the constant re-
sults), which is attributed to DSDSOLVER and EXPANDER in
Algorithm 3 even different λ and β have some impact on the
decomposition factors for adjacency matrices.

G. Scalability

We used the AMINER network here and constructed different-
size networks by subsampling the nodes of each within-layer in
the proportion of {0.1, 0.2, . . . , 1.0} while keeping the original
cross-layer dependencies of the selected nodes.

Fig. 8(a) shows the running time of INDUEN, which is linearly
scalable in the total number of links (within- and cross-layer) of
the multilayer network. The CONF part takes about 1

3 of the
total. Fig. 8(b) shows the running time of DESTINE with linear
scalable. It turns out that our method achieves more than 35×
speed up compared with DESTINE.

Moreover, the memory consumption of DESTINE is huge for
large networks, and its running time is about 11,000 s for
INFRA-3 in Table III while INDUEN only takes about 1,800 s.

VII. CONCLUSION

In this work, we proposed INDUEN algorithm to detect the
interrelated densest subgraph in multilayer networks using a
flexible joint density measure, This is a configurable frame-
work and employs joint optimization technique by virtue of
coupled factorization, greedy search, and local search. Our
method can effectively detect interrelated densest subgraphs and
consistently outperforms the state-of-the-art baseline baselines,
while also revealing various interesting and valuable patterns
in real-world networks. Additionally, INDUEN is resilient to
the parameters and scales linearly with the size of network,
achieving significant speedup.
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