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Unified Dense Subgraph Detection: Fast Spectral
Theory Based Algorithms

Wenjie Feng “, Shenghua Liu

Abstract— How can we effectively detect fake reviews or fraudu-
lent links on a website? How can we spot communities that suddenly
appear based on users’ interactions? And how can we efficiently
find the minimum cut in a large graph? All of these are related to the
finding of dense subgraphs, a significant primitive problem in graph
analysis with extensive applications across various domains. In this
paper, we focus on formulating the problem of the densest subgraph
detection and theoretically compare and contrast several correlated
problems. Moreover, we propose a unified framework, GENDS, for
the densest subgraph detection, provide some theoretical analysis
based on the network flow and spectral graph theory, and devise
simple and computationally efficient algorithms, SPECGDS and
GEPGDS, to solve it by leveraging the spectral properties and
greedy search. We conduct thorough experiments on 40 real-world
networks with up to 1.47 billion edges from various domains. We
demonstrate that our SPECGDS yields up to 58.6 Xxspeedup and
achieves better or approximately equal-quality solutions for the
densest subgraph detection compared to the baselines. GEPGDS
also reveals some properties of generalized eigenvalue problems for
the GENDS. Also, our methods scale linearly with the graph size and
are proven effective in applications such as finding collaborations
that appear suddenly in an extensive, time-evolving co-authorship
network.

Index Terms—Algorithm, anomaly detection, dense subgraph,
graph spectral theory, large graph mining.

I. INTRODUCTION

OW can we capture the most contrasted groups in tempo-
H ral or dynamic graphs, e.g., the hot topics or collaborations
in a research community that appear suddenly? How can we
efficiently determine the minimum cut for a large graph? And
how can we find the most suspicious users based on their
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behaviors or spot the largest group with consensus opinions on
controversial issues? All these real-world problems are related
to the densest subgraph detection task.

Dense pattern mining in graphs is a key primitive task for
extracting useful information and capturing underlying prin-
ciples in relational data. It has benefited various application
domains [1], such as capturing functional groups in biology [2],
traffic patterns in human behaviors [3], communities in social
networks [4], anomaly detection in financial and other net-
works [5], etc. The densest subgraph problem has garnered
significant interest in the practice because it can be solved
exactly in polynomial time and has an adequate approximation
in almost linear time. Goldberg’s maximum flow algorithm [6]
and Charikar’s LP-based algorithm [7] provide the exact so-
lution; Charikar [7] proved that the simple greedy algorithm
is guaranteed to find a result of better quality than the factor
2-approximation with linear time scales to the graph size. How-
ever, these algorithms still incur a prohibitive computational cost
for the massive graphs that arise in modern data science appli-
cations without fully considering and utilizing the properties of
real-world data.

To the best of our knowledge, there is no related work to study
the connections among the above problems. Here, we summa-
rize the differences and relations of some well-known allied
problems, including detecting communities with sparse cut or
suspicious dense subgraphs. We propose a unified formulation,
the generalized densest subgraph (GENDS) problem, which ex-
plicitly highlights their relationship formally, that is, they are the
different instantiations of the densest subgraph corresponding to
different parameter configurations. It also leads to consistent and
feasible methods for solving them. Theoretically, we provide
the analysis through the lens of network flow and graph spectral
theory. We thus devise efficient detection algorithms, SPECGDS
and GEPGDS, that leverage the spectral properties of graphs and
greedy search to solve the generalized problem.

With thorough experiments using 40 diverse real-world
networks, we demonstrate that our algorithms are fast, highly
effective, and linearly scalable. SPECGDS yields a 58.6 x
speedup and achieves almost better or equal quality than
baselines, even for a large network with 1.47 billion edges.
Experiment results from GEPGDS also reveal some properties
of generalized eigenvalues w.r.t. GENDS. Moreover, we find
some interesting patterns, e.g., contrast dense collaborations
in the DBLP co-authorship data. The main contributions are
summarized as follows.

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 28,2024 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-3636-0035
https://orcid.org/0000-0003-2120-3598
https://orcid.org/0000-0002-3206-8179
https://orcid.org/0000-0002-5201-8195
mailto:liu.shengh@gmail.com
mailto:cxq@ict.ac.cn
mailto:dkoutra@umich.edu
https://doi.org/10.1109/TKDE.2023.3272574

FENG et al.: UNIFIED DENSE SUBGRAPH DETECTION: FAST SPECTRAL THEORY BASED ALGORITHMS

® Theory & Correspondences: We propose the generalized
densest subgraph detection formulation, GENDS, to unify
several correlated problems, and provide theoretical anal-
ysis in the principle of network flow and spectral graph
theory.

e Algorithm: We devise, SPECGDS and GEPGDS, fast and
scalable algorithms to solve the unified problem.

e Experiment: We conduct thorough empirical verification
of various real-world graphs to validate the efficiency and
linear scalability of SPECGDS and GEPGDS. They also find
interesting patterns, including contrast-dense subgraphs in
co-authorship relations.

Reproducibility: Our open-sourced code and used dataset are

online available.!

II. RELATED WORK

In this section, we summarize works about the densest sub-
graph problem and various detection methods to capture those
dense patterns in different applications.

Finding the densest subgraph in a large input graph is a widely
studied problem [1], [8], [9]. The most recent tutorial [10]
comprehensively summarizes the densest subgraph discovery,
including different types of graphs, density metrics and vari-
ants, detection algorithms, and applications. In general, such
a problem aims to find a set of nodes in a given input graph
to maximize some notion of density. The so-called densest
subgraph problem (DSP) finds a subgraph that maximizes the
degree density, which is the average of the weights of all its
edges. When the edge weights are non-negative, the densest
subgraph can be identified optimally in polynomial time using
maximum flow algorithms [6], [11]. Based on the maximum
flow, Tatti and Gionis [12] present a local dense graph de-
composition similar to the well-known k-core decomposition,
with the additional property that its components are arranged
in order of their densities. There are other different density
metrics [13], including k-clique density [14], [15], edge-surplus
for a-quasi-cliques [16], triangle density, k-core [17], general
patterns [18], etc.

However, obtaining the exact solution with maximum flow
requires expensive computations despite the theoretical progress
achieved in recent years, thus making it prohibitive for large
graphs. Charikar [7] introduces a linear-programming formu-
lation of the problem and shows that the greedy algorithm
proposed by Asashiro et al. [19] produces a %-approximation
of the optimum density in linear time. [20] proposes an opti-
mization model for local community detection by extending the
densest subgraph problem. [21] devises an efficient algorithm
via convex programming, that can compute exact local dense
decomposition in real-world graphs with up to billions of edges
and proposes a (1 + €)-approximation solution based on the
Frank-Wolfe algorithm. [18] develops exact and approximate
solutions for the densest subgraph discovery by leveraging the
k-core, which is suitable for edge and h-clique densities. Boob
et al. [22] developed a simple iterative peeling algorithm,

Uhttp://www.github.com/wenchieh/specgreedy.
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GREEDY++, to improve the output quality of the subgraph over
Charikar’s greedy peeling algorithm [7] by drawing insights
from the iterative approaches of convex optimization; the history
of peeling information of nodes will help to escape the local
optimal to some extent. [23] exploited the super-modular max-
imization and proposed a more efficient (1 — ¢)-approximation
algorithm in deterministic O(m,/¢) time via approximate flow
techniques for DSP, which gives evidence of the convergence
and theoretical soundness of GREEDY++; it also developed the
2-approximation peeling algorithm for the densest-at-least-k
subgraph. [24] proposed the efficient ds-index to report all
minimal densest subgraphs in a graph and enumerate them,
where the minimal densest subgraph is strictly denser than all of
its proper subgraphs. [25] provided an algorithm for maintaining
a (1 — ¢)-approximate densest subgraph within O(poly log n)
time over dynamic directed graphs and extended to the problem
of vertex-weighted static graphs. [18] improved the flow-based
exact algorithm by locating the dense subgraph in a specific
k-core. The k-core-based exact and approximate algorithms
can be generalized by considering an arbitrary pattern graph
and aiming to maximize the average number of occurrences of
the pattern in the resulting subgraph. [26] proposed [z, y]-core-
based algorithms with the divide-and-conquer strategy to find
the densest subgraph for the directed graphs.

In addition to the original form of DSP, there are numerous
variations and generalizations. However, for graphs with neg-
ative edge weights, the above problem becomes NP-hard [27].
When restrictions on the size lower bound are specified, the
densest k-subgraph problem (DkS) becomes NP-complete [28],
and there does not exist any PTAS (i.e., a polynomial-time
algorithm A, with an approximation ratio of (1 + ¢), for each
constant € > 0) under a reasonable complexity assumption.
Other measures include edge surplus [16], triangle and k-clique
density [14], and discounted average degree [29]. Rossi et al.
[30] developed a fast, parallel maximum clique algorithm for
sparse graphs; Mitzenmacher et al. [31] used the densest sub-
graph sparsifier with a sampling schema for the input graph
and computed the densest subgraph in the resulting sparse
graph. The densest subgraph problem is generalized to those
on hypergraphs [32], [33], multilayer graphs [17], and uncertain
graphs [34]. There are also extensions in dynamic [33], [35] and
streaming settings [36], [37].

Another line of related research includes contrast graph pat-
tern mining, which aims to discover subgraphs that manifest
drastic differences between graphs. Yang et al. [38] proposed
detecting the density contrast subgraphs, which is equivalent
to mining the densest subgraph from a “difference” graph,
and employed a local search algorithm to find the solution.
Tsourakakis et al. [27] focused on the risk-aversion dense
subgraph pattern for a graph with small negative weights and
extended the greedy algorithm for this case. For signed net-
works, [39] mines dense subgraph patterns corresponding to
finding the gang in a war problem; [39] detects the k-oppositive
cohesive groups by solving a quadratic optimization problem for
signed networks. Also, [40] considers the fairness constraints for
the densest subgraph and devises approximation algorithms to
find the densest fair subgraph with an arbitrary 2-coloring.
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TABLE I
SYMBOLS AND DEFINITIONS USED IN THE PAPER

Symbol | Definition
Undirected graph with node set V' and edge set
g=WV.E) Echvgp i
5 Bipartite graph with node set, L U R (left, right),
§=(LURE) and edgeset E C L x R
G, = (V, Ey) Positive residual graph with node set V' and
AT residual edge set E;.
x Characteristic vector of a node subset
u, v Eigenvector or singular vector of a matrix
d,D Node degree vector and its diagonal matrix
Dc Diagonal matrix for a constant vector ¢
AL =D — A | Adjacency and Laplacian matrix of a graph

The dense subgraphs are used to detect communities [2],
[41], [42] and anomalies [43], [44], [45]. As one of the key
characteristics, density, as well as other similar metrics like
modularity [46], assortativity, and local density [47], are used
as the (part of) optimization objective to detect the community
structures. SPOKEN [43] utilizes the “eigenspokes” pattern of
community in the EE-plots produced by pairs of eigenvectors of
a graph, which is applied to fraud detection. CROSSSPOT [48]
finds suspicious dense blocks by greedily adjusting the seed until
it converges to a local optimum. Fraudar [45] proposed using
the greedy method, which incorporates the suspiciousness of
nodes and edges during optimization. In addition, dense pattern
detection also generalizes to tensors [49], [50]. Similar greedy
algorithms also achieve good results and can be used to detect
anomalies.

Besides, many works utilize the spectral properties of graphs
to detect communities [4], [43], [51] and dense subgraphs [52],
[53], [54], or partition the input graph [55], [56], [57]; they can
be extended to hyper or high-order graphs [58].

III. PROBLEM AND CORRESPONDENCES
A. Preliminaries and Definitions

Throughout the paper, vectors are denoted by boldface low-
ercase letters (e.g., «), matrices are boldface uppercase letters
(e.g., A), and sets are uppercase letters (e.g., S). Unless stated
otherwise, a vector is assumed to be a column vector. The
operator | - | denotes the cardinality of a set or the number of
non-zero (nnz) elements in a vector, and || - || is the ¢3-norm of
a vector. We denote [z] = {1,...,z} for brevity. Table I gives
the complete list of symbols used in the paper.

Consider an undirected graph G = (V, E) with |[V| = n. Let
S CV and E(S) be the edges of the subgraph G(.5) induced
by the subset S, i.e., E(S) = {e;; : v;,v; € S A e;; € E}. Let
A = (ai;) € R™" be the adjacency matrix of G with a;; > 0.
Here, we don’t specify G to be the unweighted graph, and we also
use |E(S)| = > .cp(s) aij for the weighted graph whenever
there is no ambiguity.

Let « with size n be the characteristic vector of the subset S of
V(x; =1ifi € S, and x; = 0 otherwise), the average degree
density of the subgraph G(.S), being the most commonly used
density measure for the densest subgraph problem, is defined by
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Charikar [7] as

C|E®)| 1 zTAz
=T T

Tz € [0,1]", (1)
and avoids the trivial solution by limiting ||| > 1. This result
is also observed by Kannan and Vinay [59].

Generally, Hooi et al. [45] proposed considering the node
weight (some constant for each node) as the total mass of the
subgraph, thus the density of G(5) is

(S) _ |E(S)| + Zies Ci xz Az :L‘TDCm
e 5] “Sas @
1z (A +2D.)x .
I B e x € [0,1]", )

where ¢; € R is the weight of the node i and D = diag(c) is
the diagonal matrix of the weight vector ¢ = [c1, ..., ¢,].

In addition to dense subgraphs of a single graph, we also
consider the “contrast” patterns of cross-graphs, i.e., a subset of
nodes with significantly different edges or edge weights in two
given graphs with the same nodeset, e.g., different snapshots of
a dynamic graph.

B. Generalized Densest Subgraph Problem.

Therefore, we propose a generalized densest subgraph de-
tection problem that unifies and revisits various well-known
existing formulations, that is,

Problem 1 (GenDS: Generalized Densest Subgraph Detec-
tion). Given a graph G = (V, E¥’) and its contrast graph
G' = (V, EQ) with |V| = n, find the optimal subset $* C V/
and |S*| > 1 such that

5" =arg maxsgv,\s‘gg(s; G,g")
" Px
™ [le([=1 z' Qzx’

where P = A + 2D, and Q = A’ + 7I with A, A’ being
the adjacency matrix of G and G’ resp., and v > 0. gopr =
9(S*;G,G") is the optimal subgraph.

3)

= arg MaX,.c(o,1]

Here, we define A’ = A’ + ~1 as the augmented adjacency
matrix of the graph G’ where I is an identity matrix. The
denominator in (3) simultaneously considers the size of the
node subset and their connections in the subgraph G'(.9), if any.
Specifically, if G’ is an empty graph, Q degenerates to a y-scaled
identity matrix by only considering subgraph size in GENDS.
P also becomes an augmented adjacency matrix of G if node
weights are equal, i.e., ¢; = ¢ > 0.

As shown in Theorem 1, our proposed GENDS problem is
more general for DSP, and many existing dense subgraph-based
formulations are special cases.

Theorem I: GENDS is a general framework for the MinQuo-
tientCut, the densest subgraph detection (Charikar), FAIRDS
(fair densest subgraph), Fraudar (suspicious dense subgraph),
SPARSECUTDS (dense community with sparse cut), TEMPDS
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TABLE II
SUMMARY FOR CORRESPONDENCE TO PROBLEM GENDS

| Method | matrix P matrix Q Constraint
1 | MinQuotientCut [55] | A - D =-L | 1 |zl <n
2 Charikar [7] A I
3 FAIRDS [40] Ap I
4 Fraudar [45] A + 2 Do I ] > 1
5 | SparseCuTDS![20] | A - 2Z¢ D I =
6 TEMPDS [2] Ay ) A+ 21 =A4
7 Risk-averse DS [27] AT+ v 1 =At A~ + el =A"

\ GENDS? | A + 2 D, | A + I =A

! The contrast subgraph pattern detection [60] equals to set o« = 1; o = % is considered in [61] for the community detection.
2 Bipartite graphs can be transformed into an undirected graph as Lemma 1 shows.

(temporal dense subgraph), and Risk-averse DS (consensus
dense subgraph), and more.

The following remarks provide detailed instantiations of
GENDS for several problems. Table II summarizes the setting
and provides the corresponding equation, carefully aligned to
highlight the correspondences to GENDS.

Remark 1. MinQuotientCut: The optimal quotient cut ratio
problem aims at partitioning a graph into two parts with the
minimum cut size.

Given S C V, let the set of cut edges for S be cut(S) =
{(u,v) € E|lu € S,v e V\ S} and the corresponding charac-
teristic vector be «, the cut size can be represented as |cut(S)| =
Deer @ig (T — z;)? =z (D — A)xz = x' Lz, the cut ratio

of S is Reut(S) = % Assume that, without loss

of generality, S is smaller than its complement set V' \ .S, we
obtain the minimum cut ratio by maximizing — “”wTTme ; it corre-
spondstoP = —L withe = 7% andQ = IwithA’' =0,y =1
in GENDS. In the other setting with Q = D, the problem
will correspond to the Normalized Spectral Clustering [62],
Neut(S,S) = |21;§§§§| where vol(S) =" . dy. Thus, it is
equivalent to set P = —D~1/2LD~1/2 = L,,,,,, i.e., the nor-
malized Laplacian matrix of G, and Q = 1.

Remark 2. Charikar: The densest subgraph detection prob-
lem as formulated in (1) corresponds to P = A and Q =1
ignoring the constant factor.

In a more general case, [63], [64] use A configured with dif-
ferent 7y to explore the trade-off between density and size of the
final dense subgraphs with the domain-set-based optimization
method.

Remark 3. FAIRDS: The fair densest subgraph detection
problem ensures each subgraph contains an equal number of rep-
resentatives of the node labels via the fairness constraints [40].
Here, the node label is uncorrelated with community member-
ships.

Given the matrix F' whose columns form an orthogonal basis
of the subspace denoting the constraints that every label is
featured equally often, let Ar = (I — FF')A(I - FF'), the
number of edges of the induced subgraph by a fair subset S is
”JTATF":. Therefore, FAIRDS correspondstoP = ApandQ = L
If the node label is binary, F' degenerates into a unit 2-norm
vector.

Remark 4. Fraudar: The suspicious densest group detection
problem treats the weights of nodes and edges as the suspicious-
ness score of nodes and edges, i.e., ¢, and a;; measure how
individually suspicious the particular node u and edge e;; are
(can be determined by other information, like user profile and
text of content). As (2) shows, it equals to P = A + 2D, and
Q = I, where the numerator x ' Pz is the total suspiciousness
of the subgraph, ignoring the constant factor.

Remark 5. SPARSECUTDS: The SPARSECUTDS finds a com-
munity that is densely connected internally but sparsely con-
nected to the rest of the graph; it is optimized by maximizing
the density while minimizing the average cut size [20]. With the
formulation of the cut size (Jcut(S)|) in remark 1, the objective
to be maximized by SPARSECUTDS is denoted as

g) |B(S)| — a-|cut(S)| =" (3 +a)A—aD)z
9a(5) = |S| N 'z

2a
z! (A - 2a+1D) T

= C-
'z ’

where « € [0, 00) controls the significance of the |cut(S)| term
and ¢ = % + « is a constant. Thus, it corresponds to P = A +
2D with D, = —577Dand Q = L.

Remark 6. TEMPDS: TEMPDS detects dense subgraphs with
nodeset S appearing at time ¢ suddenly while having very
few edges at time ¢ — 1 [2]. Let A; and A;_; be adjacency
matrices of the snapshots of a temporal graph. Thus, 2 " A, and
x ' A, are twice the number of edges of the corresponding
subgraphs. Taking the size of .S into consideration, the objective
of TEMPDS is to maximize g(S) = ET(X::AlfQI)a: = mf;i‘fm
ie.,y=2.

Remark 7. Risk-averse DS: Given a graph G, the positive
entry a;; of its adjacency matrix A represents the expected
reward of the edge e;; and the negative entry is opposite to the
risk of the edge, the absolute value |a;;| measures the strength.
Then, A can be written into A = AT — A~, where AT is the
reward network and composed of all positive edges in A, that
is, its entry AZ]- = max(a;;,0); and A~ is the opposition risk
network and its entry A; ; = | min(a;;,0)|.

The Risk-averse dense subgraph detection problem finds a
subgraph that has a large positive average degree while a small
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negative average degree [27]. It is formulated in the GENDS
by P = A" + 2D, with c= %1 and Q = A~ + 7,1, where
Y1,7v2 > 0 control the size of the subgraph considering the
contribution of the size of .S.

As for the densest subgraph detection for a bipartite graph G,
it can be reduced to the GENDS framework by converting Gto
be a monopartite graph as follows.

Lemma 1: Given a bipartite graph G= (L U R, E) with the
left-side nodeset L and right-side nodeset R, L N R = () and
|L| + |R| = n, the densest bipartite subgraph detection prob-
lem over G corresponds to the setting that = = [y; 2] € R
concatenating y € [0,1]'*l and z € [0,1]/%l, and P € R™*",
Q E Rnxn’

P =

AT D

2 CR

D., 3]

= anti—diag([A, AT]/2) + diag([De, , De,])
Q = diag([LiLx ), Lir|<|r|])

where ¢y, and cp are the node weight vectors for L and R, re-
spectively. A € RIZ¥I%l is the adjacency matrix corresponding
to G, and I is the identity matrix with subscripts to denote its
shape.

There is a line of works that use different density metrics [7],
[59] for dense subgraph detection of a bipartite graph G ie.,

d(s,T) = \‘/E‘%S} is the density of the subgraph induced by
SUT,where S C LandT C R; |E(S,T)|is the edgeset of the

induced subgraph. The relative merits of d(S,T") and g(S) as
objective functions for density were discussed in [7], [26], [59].

Considering the metric ¢(S), in this paper, we formalize
a unified framework for our problem and reveal the relation-
ship between the densest subgraph and the graph spectral in
Theorem 4. We know of no similar results to ours.

To avoid some trivial solution for the weighted graph, e.g.,
the single edge with a heavy weight, we can introduce column
weights as A - diag( (1TA)) for some function h, e.g., h(x) =

x® with o € RT or h(z) = log(x + ¢) with a small constant ¢
to prevent the zero denominators, as used in [45]. Besides, we
can use motif-based high-order graphs [58] to recognize more
complex dense patterns.

IV. FLOW-BASED EXACT SOLUTION AND ANALYSIS

In this section, we demonstrate through analysis the hardness
of our problem and solve instances of an approximate GENDS
problem, by mapping to the MIN-CUT problem. The rationale
behind this idea is similar to [6].

Given a positive value 3 € RT as a guess, we determine
whether there is a subset S such that maxscy ¢(5;G,G’) > 8
for the GENDS problem.

We construct an edge-weighted directed network N =
(Vn, En) as follows. The nodeset Viy = {s,t} UV with s,t ¢
V and the edgeset 'y = F1 U E5 U E5 where Fp is the edges
from sto V, ie., By = {(s,u) |u € V}; E denotes replacing
each undirected edge of E¥ U E? by two directed edges, i.e.,
By = {(u,v), (v,u) | (u,v) € EX U EY}; and Ej3 is the edges
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from V to ¢, i.e., E3 = {(v,t) |v € V'}. The edge weight w for
different edgeset is given as

df +2¢c, ife=(s,u) € Fy,

" P Buw@ %fe € E, @
Y8+ BdY  ife = (v,t) € E3,
0 otherwise.

where d¥ (df?) is the degree of node u (v) of G (G), w! (wf;?)
is the weight of the edge e of G (G'). And w, = 1 for all edge ¢
of an unweighted graph.

In the graph theory, we know that the MIN-CUT problem for an
undirected, (non-negative) weighted graph can be exactly solved
in polynomial time using various algorithms, including the
Stoer-Wagner algorithm, Gomory-Hu algorithm, and Karger’s
algorithm, etc., while it becomes an NP-Complete problem by
a trivial transformation from the maximum-cut problem [65],
[66] when there are negative-weight edges in the graph, except
in some special cases that are polynomial-solvable [67]. In
the above network N we constructed, E> may contain some
negative-weight edges in (4), resulting from those edges in
EQ\ET or some large values of 3. Thus, our problem is
generally NP-hard to find the exact solution.

In an approximate way, we can modify the network N to
construct the edge set E'5 by removing the edge e€ E@ \EP and

making the guess 3 < w where w = min

Then, we get the following polynomial solvable s-t min-cut
problem.

Let Wgr =Y, cprwl (similar for Wge) and C =
> wev Cv» Which are constants for a given network. Given the
node subset S, let Wgr = Y emrhgxs WL (similar for WES)
and Cg = ZUE g Cy. Thus, the total weight of the induced sub-
graph by S with the characteristic vector x is WE§ — z Az
and the total weight of nodes in S is C'g.

A partition of Viy determines a s-t cut by two sets {s} U S and
{t} UV\S.If |S| = 0, then the capacity of the cut is ¢(s, ) =
ey AV +2¢, = 2(Wgr + C) = C; otherwise

C(S,t) = Z W(u,v)
ue{s}US, ve{t}JUV\S
- Y wr X e Yo
e=(s,u),ucV\S eccut(S)CEs e=(v,t),vesS
= Y @di+2e)+ D> (Wl - pu®)
ueV\S eccut(S)CFEy
+> " (1B + BdS)
veS

= 2(Wgr +C) = 2Wgr — 2Cs + 26W 0 +7015|

. 2Wgr +2Cs
C+ (2Wge +115)) - | B

B 2Wye + 9]

= C+ (2Wge +1I5)) - (8- 9(5;6,9"),

Authorized licensed use limited to: Tsinghua University. Downloaded on May 28,2024 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.



FENG et al.: UNIFIED DENSE SUBGRAPH DETECTION: FAST SPECTRAL THEORY BASED ALGORITHMS

where 2WE§ +]S| > 0 (even only consider E¢ N ET for
WEgz ). The following theorem helps to determine whether 3
is too large or too small based on the conclusion in [6].

Theorem 2 (Parametric Min-Cut Optimality?): Given the sub-
set S, assume that the partition {s} U S and {¢t} U V'\ S gives the
minimum capacity cut for the graph. If |S| # 0 then 5 < gopi;
if |S| = 0 then 8 > gop:-

Therefore, we can use the binary search for the guess 3 €
(0, w] to find the subset S with the minimum capacity [6], [11].
Note that this is just a constrained variant of the solution for an
approximate version of our GENDS problem.

V. SPECTRAL-BASED THEORETICAL ANALYSIS

Here, we connect the optimization of GENDS to the graph
spectral theory and generalized eigenvalue problem, showing
that we can efficiently approximate the solution with the skew-
ness properties of the spectrum of the real-world graphs, thus
guiding the design of our algorithm.

A. GENDS Under Graph Spectral Theory.

Derived from the theoretical analysis of the problem hardness
for exact solutions in Section IV, we construct an approximation
problem for the GENDS, which permits a polynomial-solvable
solution based on the maximum flow algorithms or a fast ap-
proximate solution by our proposed method.

Given the graphs G and G, we can construct a positive residual
graph G, = (V, E,.) with the edgeset E, = {(u,v)|(u,v) €
EP A (u,v) ¢ EQ} and the edge-weight is w. = w! — fw&
for Ve € E,., where the user-defined parameter 0 < 3 < w con-
trols the contribution of the contrast graph. The adjacency matrix
of G, is denoted as A, = (P — 8Q)™, which only keeps the
positive entry in the matrix. In particular, 5 = 1 for unweighted
graphs.

Hence, the densest subgraph detection for G,. finds the induced
subgraph that maximizes the density in G while minimizing that
in G, approximating our original problem 1. Thus, the objective
function in (3) is approximately formulated as

T +
F A MWgefo 1) w1 T,
z A,z
= Arg MaXgefo 1)n a1 7 )

Being non-negative edge weights for G,, we can formulate
(5) as a standard MIN-CUT problem and apply those algo-
rithms mentioned in Section IV for the exact solution. However,
its complexity is still prohibitively costly, especially for large
graphs. In the rest of this section, we will connect the densest
subgraph detection problem with graph spectral theory and aim
to find a fast approximation algorithm by using the spectral
properties of real-world graphs.

Consider the optimization problem with a similar form to
(5) defined over the real vector space (i.e., x € R™\ 0), it is

2Refer to [6] for the detailed proof.
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formalized in the Rayleigh quotient format as

z A,z

z'x

R(A,,x) = , x € R" x #£0, (6)
where A, € R™*" is a symmetric matrix. It holds that R(A,., ¢ -
xz) = R(A,, x) for any non-zero scalar c. The objective of (5)
is a special case for a binary vector.

The following Rayleigh—Ritz Theorem [55] from the spectral
theory gives the optimality solution of (6).

Theorem 3 (Rayleigh—Ritz Theorem®): Let A, be a symmet-
ric matrix with eigenvalues Ay > ... > X, and corresponding
eigenvectors uy, . .., Uy, i.e, A, = > . A;ul u;. Then

max x A,x— x=1u

M =max R(A,,x) =
1 = max R(A,, @) weR™, |z]=1

min  x A,z = x =u,.
zeR” ||z||=1

Ap = mig R(A,,x) =

at

In general, for 1 < k < n, let 8§ = span(U) as the span of
column vectors of the matrix U w.r.t. top-k eigenvalues, i.e.,

S8k = {u1,...,ux}, and set o = 0. Then
A= max R(A,,x)= max x A,z
x#0, 18 1 [|z||=1, 2 L8%_1
— T = Ug.

Therefore, Ay, is the largest value of R(A,., x) over the com-
plement space of Sy,_1.

In analogy to eigenvalues, the singular values of a matrix
achieve an optimality property that resembles that of Rayleigh
quotient matrices [68]. To avoid negative eigenvalues of a large
magnitude for real graphs [69], we instead use singular values
and singular vectors in the following.

Let A, = UXV? =37  o;u;v!] be the singular value
decomposition of A,., the columns of U and V are the left-
and right-singular vectors respectively, i.e., U = [u1, ..., u,]
and V = [vy,...,v,], 3 = diag([o1, . .., 0,]) for the singular
values o1 > --- > o, > 0. We also have the following formu-
lation in regard to the GENDS problem,

Lemma 2: The optimal solution for the GENDS in (3) can be
written as

z A,z

Tz

E uij

jes

* _
S% = arg max e (o 1)n o|>1

n
=arg maXSEV,\S\Zlﬁzgi Z’quj (7N
i=1 jes

where u;; and v;; denote the j-th element of u; and v; corre-
sponding to o;, respectively. It is clear that the optimal density
value gope < 071.

For the bipartite graph, we define the related quadratic opti-
mization problem for an asymmetric A, € R™*™ as

z'Ay
r'xz+y'y’
st. x e Ry € R™;

R(A;z,y) =

x#0,y#0.

3The proof details of the theorem refer to [55].
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We also obtain the following theorem that leads to a similar
statement as Theorem 3, which avoids constructing the big
matrix of R(7+m)x(m+n) for the bipartite graph.

Theorem 4 (Bigraph Spectral): Suppose A, is a m X n ma-
trix, and its singular value decomposition is A,, = UXV7 For
any vectorx € R™ andy € R"

o= max x Ay>

1= > max 2-R(A,;x,y)
lzl|=lyl=1

z#0,y7#0
=T =u;, Y="0].

In general, for 1 <k <r, let Sg = span(U) and SZ =
span(V) denote the span of column vectors of U and V,
respectively. Let 8§ = 0 and 8§ = 0. Then

o) = max ' Ay
zl|=lyll=1
@18, yl8)

> max
x#0, y7#0
@18, yl8)

2-R(A,,z,y) = T ="u, Y=

Therefore, given a bipartite graph G = (L U R, E) with the
adjacency matrix A € RIZ*IBl we will have similar properties
to Lemma 2 as

Lemma 3: For the densest bipartite subgraph detection in
Fraudar with P = diag([4, ATT]) and = Pz = |E(S)|, the
optimal solution can be written as S* = arg maxgc(o 1) |z/>1
z Px.

and the optimal gop is

z Px

ma; —_— = ma, R(A,,y, 2
mE[O,ll"?\(m\zl z'x yE[OJ]‘L‘,zXE[O,l]‘R‘ ( nY )
ly|>0,|z|>0
1
= sdtys )@Zf’i > ui > vi | ®
= z
551 =1 \jes(y) jes(z)

where u;;, v;; denote the j-th element of u; and v;. It also holds
that the optimal density gop < 075.

B. GENDS Under Generalized Eigenvalue Problem

For the GENDS problem, P and Q are symmetric and have
a real spectrum as undirected graphs. It always holds that
' Qx > 0 for x € [0,1]™\ 0, since it counts the number of
edges and the size of the induced subgraph in G’. Assuming that
Q is positive definite, i.e., xQz " > 0 for any = # 0; with the
relaxation © € R"™, the objective function in (3) is equivalent
to the generalized Rayleigh quotient problem [55], [57], [70],
ie,R(P,Q;x) := :Ig; . Thus, according to the Rayleigh-Ritz

quotient method [71], it can be restated as

subject to x'Qx =1. ©)

maximize x' Pz,
xT

The Lagrangian [72] for the above (9) is
L=x"Px—Arlx' Qe —1),

where X is the Lagrange multiplier. Equating the derivative of £
to zero gives

oL se
—zZPm—Qka‘:tO = Px =1Qux,

g (10)
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which is a generalized eigenvalue problem (GEP) denoted by
the pair (P, Q), then « corresponds to the eigenvector, and X is
the eigenvalue. So, the eigenpair (®, A) corresponds to a set of
generalized eigenvectors and eigenvalues of (P, Q).

Assume that there is some Q that satisfies the condition. The
eigenvector is the one having the largest eigenvalue that achieves
the goal of the maximization of (9).

Given the leading eigenpairs (®, A) with the eigenvalues in
decreasing order, our objective function in GENDS has local
bounds as Lemma 2 and Lemma 3 over the discrete vector
space (i.e., x € [0, 1]™); that is, the i-th optimal value gépt <
A; based on the eigenvector ¢; and the final optimal density
Gopt = max; g, < A1, where ¢; is the i-th column of ® and 1;
is the i-th element of A.

For the eigenvalues )%A/ of the adjacency matrix A’ with
1 <4 < n,itisknown that ) " AA = tr(A’) = 0. Thus, max-
imizing (3) will be problematic due to the singularity of Q in
some real scenarios. However, we can construct Q to be strictly
diagonally dominant and positive-definite by introducing a large
value of v [73], i.e., Q;; > ijj# |Q;;|, which gives higher
priority to the size of the subgraph in G’, for example, the sign-
less Laplacian (i.e., Q = A + D) for connected non-bipartite
graphs. To adapt to more general situations, we usually take the
residual graph G, as an approximation format, as described in
Section V-A.

C. Skewness Properties of Real-World Graphs.

In theory, Milena and Christos [74] proved that the largest
eigenvalues of graphs, whose highest degrees are Zip-like dis-
tributed with a slope of «, are distributed according to a power
law with a slope of «/2. Therefore, the spectral-formulated
densest subgraph detection problem benefits from the power-law
node degrees of a graph concerning the above conclusion, since
the majority of the contribution to the objective value comes
from those w.r.t. the leading eigenvalues. Moreover, many graph
generators create more realistic graphs that match these patterns,
including the power-law degree and eigenvalue distributions,
including STORM [75], R-MAT [76], Kronecker graph [77],
etc.

In addition, sparsity and various power laws are indeed the
key components of the real-world networks gathered from the
world-wide-web, social networks, E-commerce, online reviews,
recommendation systems, and more. Those primary properties
contribute to time- and space-efficient computing or storage and
synthetically modeling realistic networks. Various studies [77],
[78] have shown that most real-world graphs have a statisti-
cally significant power law distribution with degree distribution,
the distribution of “bipartite cores” (= communities), a cutoff
in the eigenvalue or singular values of the adjacency matrix,
and the Laplacian matrix, etc. Also, the distribution of eigen-
vector elements (as indicators of “network value”) associated
with the leading eigenvalues of the graph adjacency matrix is
skewed [79].

Taking the soc-twitter network as an example, which is
the largest network with 1.47 billion edges used in experiments,
Fig. 2(a)—(b) shows the above properties. The distributions of its

Authorized licensed use limited to: Tsinghua University. Downloaded on May 28,2024 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.



FENG et al.: UNIFIED DENSE SUBGRAPH DETECTION: FAST SPECTRAL THEORY BASED ALGORITHMS

1363

20 Il SpecGDS/Greedy 102
Il SpecGDS/SpokEn )
- 15
c 1
3 § @ 10 Linear time
) Q10 g
© ® 100
S 10
o)
° £
oL I F 107
AR S N @‘bq') ESRN SRR PN NS °
FES SETANUIERTSE
AN YV > S P SRRV
U 3 R . QX w @ 102 10% 108 108

Runtime improvement ratio

(a) Speedup statistics for the densest subgraph
detection (SPECGDS vs. GREEDY).

Fig. 1.

Density improvement ratio

(b) Comparison for the density quality of
the optimal densest subgraph.

Number of edges

(c) The linear scalability of SPECGDS
w.r.t. the number of edges in a graph.

The proposed algorithm SPECGDS is fast, effective, and linear-scalable. (a) Our proposed method detects the densest subgraphs (qualities in Fig. 1b)

up to 58.6x faster than the widely-used GREEDY algorithm for various real-world datasets (40 in total). (b) SPECGDS has better or comparable density quality
compared with GREEDY and SPOKEN algorithm in the densest subgraph detection. It consistently outperforms SPOKEN for all graphs and finds up to 28 x denser
subgraph; it obtains the same or denser (more than 1.26x) optimal density for most graphs compared with GREEDY, and 4 graphs with very close densities
(> 0.996 x) and only 2 graphs with less than 0.9 density improvement. (c) The time taken of SPECGDS grows linearly with the size of the graph.
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(a) The distribution of the leading singular
values of A and the optimal density g(.S;;)
corresponding to the singular vector w,..

Fig. 2.

(b) The distribution of the elements in top
singular vectors u, of the adjacency matrix.

(c) The distribution of the top ten
eigenvalues )\ from the generalized
eigenvalue decomposition of two matrices.

The running example and properties of the real-world networks. (a) shows the power-law distribution phenomenon of the top-ten singular values o;

of the adjacency matrix A and the optimal density g(S?:) detected based on the corresponding singular vectors w; by SPECGDS. (b) shows the skewed distributions
of the leading 3,000 elements of the top six singular vectors from soc-twitter network. (c) shows the similar power-law distribution of the top ten generalized
eigenvalues of subgraphs (2006 and 2007) from the DBLP co-authorship network (2 = 2006), under different construction strategies for v in Q;; + v as

Section V-B, i.e., max(0.5, sz)’ d;%am, and 100; d%az is the maximal node degree in G'.

top singular values and the elements of the large magnitude of the
corresponding singular vectors follow the power law or skewed
distribution. The distribution of eigenvalues and elements of
eigenvectors w.r.t. the GEP also have similar properties, as
Fig. 2(c) shows.

Therefore, with the spectral formulation of GENDS, the skew-
ness, coming from singular values and components in singular
vectors of the real-world graphs, guarantees that we can only
consider the leading singular vectors and use a few elements of
a large magnitude in them to efficiently construct the candidates
for the dense subgraphs detection and obtain the optimal. We
will introduce it in more detail in the next.

VI. ALGORITHMS & COMPLEXITY ANALYSIS

In this section, we present our proposed methods SPECGDS
and GEPGDS for the unified GENDS problem, and provide
analysis for their properties.

A. Preliminary: GREEDY Algorithm

We first review the related Charikar’s peeling algorithm as
GREEDY | with edge density as the metric g as in (1). It takes
into the entire original graph, greedily removes the node with
the smallest degree from the graph (in Line 3), and returns the
densest one among the shrinking sequence of subgraphs during
the procedure. It is guaranteed to obtain a solution of at least
half of the optimum density, i.c., g* > $gope. By utilizing the
priority tree to manage the nodes during the peeling process, the
complexity is O(|E|log |V]).

Moreover, though there is an efficient implementation for
GREEDY, which results in O(| E| + |V|) time complexity [7], it
only suits the unweighted graph, and the linear time implemen-
tation does not carry over since it depends on the fact that vertex
degrees are integers bounded by |V'|. The GREEDY algorithm can
be implemented using Fibonacci heaps to determine the mini-
mum degree vertex in Line 3 and achieve O(|E| + |V |log |V])
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Algorithm 1: GREEDY: Densest Subgraph Detection.

Input: Undirected graph G, density metric g.
Output: Nodeset S* w.r.t. the densest subgraph in G.
1.5« S > S is the nodeset of G
2 while S # () do
> find the vertex to maximize the metric
3 | U< argmax,cg g(S/{u})
> S/{u}: the remaining nodeset without vertex u
4 | Remove 4 and all its adjacent edges from G
5 | if g(S) > ¢g(S*) then
6 | 5*« S

7 return S*.

time for the weighted graph. However, many analysis reports
and empirical results have demented the inferior performance of
the Fibonacci heap compared with other similar data structures
in real applications. For instance, compared to binary heaps,
Fibonacci heaps are more complicated when it comes to coding
them. They are not as efficient in practice compared with the
theoretically less efficient forms of heaps since, in their simplest
version, they require storage and manipulation of four pointers
per node, compared to the two or three pointers per node needed
for other structures [80]. Hence, we adopt the priority tree as
the efficient implementation of GREEDY, which has been widely
used [45], [60], [81], to fit different cases, including the weighted
graphs and the introduced column weights.

However, it is worth mentioning that the densest subgraphs
are usually much smaller and embedded in a large graph (as
background). Thus, searching from scratch results in many
inefficient searches and update steps to find an approximate
solution or even candidates for GREEDY.

B. Implications of Theoretical Analysis

Lemma 2-3 show the upper bound of the optimal density,
i.e., gopt < 01, and oy, is the optimal value for the real space
orthogonal to 8;_1 (k > 1) as Theorem 3-4. The formulation
of S* highlights that the real-value singular vectors provide
insight into finding the optimal densest subgraph, that is, these
nodes in S* will have greater importance in the singular vectors
associated with the leading singular values.

Considering the skewed distribution of the magnitude of
the elements in a singular vector, we will construct some
small-size nodeset candidates, from which we can derive some
subgraphs, with the nodes having a large magnitude value in
the leading singular vectors to avoid searching from scratch,
thatis, S = {51, ..., Sk; 1 < k < n} with the i-th candidate
S, = {jiuy > Apj € (LI} U {jsvy > Ap.j € [R])} for
the singular vectors u; and v;, A, and A are some pre-defined
truncation thresholds; the optimal density for G(.S;) is g; < ;.
Here, we determine the selection thresholds as Ay, =1/ \/m
and Ar = 1/4/|R|* based on the re-formulation of the optimal
solution in (7)-(8).

4If A is symmetric in Eq.(7), |L| = |R| =nand Ap = Ap = ﬁ
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C. Proposed Algorithm: SPECGDS

Therefore, we propose SPECGDS, which utilizes spectral
graph properties and the greedy peeling strategy to solve the
GENDS problem. Algorithm 2 summarizes our approach.

Given the adjacency matrix A, of the residual graph G,., den-
sity metric g, and the top-approximation rank k, which controls
the maximum size of the candidate set. SPECGDS first finds
the top-k spectral decomposition of A, (Line 2), then detects
the possible densest subgraphs based on the leading singular
vectors. In each round, it constructs the candidate subset S,
based on the truncated singular vectors u,. and v,, and uses the
greedy algorithm to search for the densest subgraph for G,.(.S;)
to maximize g. It checks the stop condition with the next singular
value for the current optimal result, i.e., g;,,,,., at Line 7 for early
stopping.

Specifically, the selection of G,.(.S,.) in GREEDY depends on
different instantiations of metrics at Line 5. For example,

® 4 = arg min,g dg, (u) for Charikar

® 4 = arg min,g dg, (u) + c, for Fraudar

o = arg minuegré . dg,r,(v) — Q- dv\{gr\{u}} (u)

SPARSECUTDS

where dg_ (u) is the degree of the node u of G, and
dy\(g,\{u}}(u) is the number of edges from u the other part
V'\ G, of the original nodeset.

How many subgraph candidates do we need to check, i.e., the
lower bound of k? Using some off-the-shelf detection methods,
e.g., GREEDY, let g7, be the current detected optimal density
based on the singular vectors. If there exists some r € (1, k] sat-
isfying g;.,,,. > o, the optimal density g,,; can be determined to
gz due to the decreasing order of singular values (o; > ;1)
and the upper-bound (g; < o;). Finally, the subgraph concerning
Jopt 1 returned as a result.

Furthermore, the power-law distribution nature of the sin-
gular values of real-world graphs and the theoretical bounds
of solutions from detection algorithms (the exact or %—optimal
approximate result) guarantee that the size of the candidates will
be very small, as shown in Section VII.

Fig. 2(a) gives an example of the relation between the leading
singular value o, and the optimal density g(S}) detected from
the corresponding singular vector u,.. The algorithm terminates
at 7 = 5 due to the early stopping criterion, and returns G, (.5%)
as the result of g, = g(.5%).

Besides the pre-computing top-k spectral decomposition
strategy in Line 2, we can use other ways to get further opti-
mization, e.g., a lazy or online way to compute the (r 4+ 1)-th
largest spectral decomposition result with the power methods
or the efficient Krylov subspace methods, such as the Lanczos
method [82]. In the experiments, we adopt an incremental de-
composition method that gets top-/ singular values and singular
vectors at first; if the stop criterion in Line 7 is not satisfied,
we then get the further next s singular values and singular
vectors with step-size s. The step-wise increasing decomposition
will continue until reaching at most k& singular vectors or the
early-stopping criterion holds.

Since S, is quite small, we can use other approaches to detect
the densest subgraph in Line 5, except for GREEDY, considering

for
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Algorithm 2: SPECGDS: General Dense Subgraph Detec-
tion.

Input: Matrix P, Q for the graph G and G, density
metric g, top-approximation rank k.

Output: Nodeset S of the densest subgraph in G,.

S=90

A, = (P — BQ)™" > construct positive residual graph G,

U,%,V =SVD(A,, k) » top-k spectral decomposition

forr < 1to k do

> construct the candidate set S,. based on u,. & v,

5 ST:{i:UT¢>AL,i€[|L|]}U{j:’vrj>

Ag,j € [|R[]}

6 S¥ < GREEDY(G,(S,), g) b greedily remove nodes

> the current optimal density g%, = g(S)

7 | if g(SF) > g(S) then

8 L S+ S;

W N =

> spectral early-stopping criterion
9 | ifr <k&g(S)> 0,11 then break;

10 return S.

the enhancement of the solution, e.g., GREEDY++ [22], Sweep-
cut [57], or the LP method, etc.

We provide an analysis of the time complexity as,

Theorem 5 (Time Complexity of SpecGDS ): The time com-
plexity of the SPECGDS algorithm is

O(K - |B| + K - |E(S)|log |5]),

where K is the top approx. rank and S = arg max s,|Si| with
i € [K]. Ideally, K = min{k,rop; + 1} where k is the input
parameter (k < log |V']) and r,,, is the rank with the optimal
resultant density g*.

Proof 1: The complexity of computing a top eigenvec-
tor/singular vector in sparse graphs is linear, i.e., O(|E(V)|),
and the total complexity of the greedy algorithm in Line 5 is
O(|E(S)|log|S|) for G(S), Thus the algorithm takes O(K -
|E| + K - |E(S)|log |S]) time.

Given the skewness of the top singular vectors in real-world
graphs, we usually have |S| < |V|, making SPECGDS a linear
algorithm in the number of edges.

D. Proposed Algorithm: GEPGDS

Based on the analysis in Section V-B, we proposed GEPGDS
to find the densest subgraph under the GEP. Algorithm 3 sum-
marizes the details.

Given the symmetric matrices P and Q of the graphs G and
G’ as input, where Q is strictly diagonally dominant with some
v, GEPGDS computes generalized eigenvalue decomposition
(GEVD) to obtain the top-k eigenpair (®, A). Then, it searches
for the optimal solution for (3) over these eigenvectors (Lines
3-8). In each loop, a truncation threshold A (like 1/+/n) is
also used for the eigenvector ®, to obtain the set S, as a
candidate solution; and greedily remove nodes in S, to improve
the objective function until convergence. We utilize a similar
early stopping criterion to SPECGDS, i.e., comparing the density

Algorithm 3: GEPGDS: General Dense Subgraph Detection
With Generalized Eigenvalues.

Input: Matrix P, Q for the graph G and G, density
metric g, top-approximation rank k.

Output: Nodeset S w.r.t. the GENDS.

15=0

> top-k GEVD for the matrix pair (P, Q)

[, A] = Eigs(P, Q. k)

3 forr < 1to k do

> S, is a candidate set for the target subgraph

4 Sy ={v:®,.(v) > A}

5 | while3v e S, g(S,) < g(S,\ {v}) do

L > remove candidate to improve the objective func.

N

6 Sy =8\ {v}

7 | if g(S;) > g(S) then

8 L S+ S,

o | ifr <k&g(S) > A\rq1 then break;
10 return S.

g(S) with A,41 (Line 8). It returns the nodeset S w.r.t. the
GENDS.

Theorem 6 (Time Complexity of GepGDS ): The time com-
plexity of the GEPGDS algorithm is

3 1K S| log |S
O(leogbg;+f{5|log|5|>’
€

where nnz(P,Q) ¥ nnz(P)+nnz(Q)=|EP|+|EQ|+|V],
k& max(x(P), x(Q)) with (-) is the condition number, p &f
1-— %, |)~L1| >0 > |)~LK| being the top-K eigenvalues of

Q~'P, and € is an error, based on the method [83]. KX and S are
similar to those in Theorem 5.

VII. EXPERIMENTS

We design experiments to answer the following questions:

1) QlI. Efficiency: How does SPECGDS compare to the state-
of-the-art greedy algorithm for detecting the densest sub-
graph?

2) Q2. Effectiveness: How well does SPECGDS work on
real-world data, and perform on detecting the contrast
dense subgraphs and injected subgraphs? How about the
performance of the GEPGDS?

3) Q3. Scalability: Do our methods scale with the input graph
size?

Data: We used a variety of datasets (40 in total) obtained
from 5 popular publicly available network repositories, includ-
ing Stanford’s SNAP database [84], Network Repository [85],
and AMiner scholar datasets [86], etc. There are 32 monopar-
tite graphs and 8 bipartite graphs; 5 of them also have edge
weights. Among them, the largest unweighted graphis the soc -
twitter with 1.47 B edges, while the smallest unweighted
graph has roughly 14.5 K edges. Multiple edges and self-loops
are removed, and directionality is ignored for directed graphs.
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Fig. 3. The performance of SPECGDS for the real-world networks. (a)
SPECGDS runs faster than GREEDY in all graphs for detecting the densest
subgraph with the same or comparable density, achieves 58.6x speedup for
ca-DBLP2012 and about 5.2 x for the largest graph soc-twitter. (b) The statistic
information about k& for spectral vectors. The densest subgraphs with optimal
density gx are achieved in the first singular vector for most of the datasets. The
blue bars show the statistics of k£ when the algorithm stops given the parameter
k = 10.

Detailed information about those networks is provided in the
supplement, available online.

Implementations: We compared efficient dense subgraph de-
tection algorithms. We implemented our methods, GREEDY [7],
and SPOKEN [43] in Python (Fraudar [45] is the same as
GREEDY in our case; no column weight is needed); SPOKEN
detects the densest subgraph only based on the truncation of
the singular vectors like our method. For a fair comparison, we
reimplement the CoreApp proposed in [18] in Python based on
the author-provided source code.

In all the experiments, we set the parameters of the top-
approximationrank £ = 10and! = s = 3 for SPECGDS. We ran
all experiments on a machine with 2.4 GHz Intel(R) Xeon(R)
CPU and 64 GB of main memory.

A. QI. Efficiency

To answer QI, we apply our method SPECGDS and the
baseline GREEDY to 40 unweighted networks and compare their
runtime.

1) Performance Over Real-World Networks.: Fig. 1(a)
shows the statistical information about the runtime improve-
ment ratio of SPECGDS compared with the GREEDY algorithm
for detecting the densest subgraphs. Fig. 3(a) illustrates more
detailed information about the time taken by the two methods:
for each network dataset, it provides their runtimes and network
size.

Observation 1: Our method runs faster than GREEDY and
achieves the same or comparable optimal densities, as shown in
Fig. 1(b). Among these varied-size datasets, SPECGDS achieves
3.0-5.0x speedup for 17 of them, 1.5-3.0x for eight, 5.0-
7.0x for seven networks, and more than 58.6x for the ca-
DBLP2012 graph. As we can see, SPECGDS is more efficient
for large graphs, e.g., its speedups are up to 30 x for ca-DBLP-
NET, 25X for cit-Patents, and 3X for soc-twitter.

For the five weighted graphs, we observe similar results as
above. SPECGDS achieves 24-39x speedups for 3 of them and
11-17x for the rest. GREEDY will perform poorly for graphs
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dominated by a few edges with large weights, since it needs to
peel each edge of the whole graph.

Moreover, we find that the SPECGDS detects larger (nearly
2x and up to 20.87x) and denser subgraphs than CoreApp for
almost all datasets. As for the runtime, SPECGDS runs faster than
CoreApp for some very large datasets, including ca-DBLP-
NET and com-Orkut; it takes no more than 2x time for most
of the remains and at most 3.64x for some. See detailed results
in the supplementary, available online.

Fig. 3(b) summarizes the statistics about spectral vectors k
for obtaining the optimal density ¢* and the actual £ when the
algorithm stops. A larger k£ means taking more time for SVD
and detecting candidate subgraphs.

Observation 2: From the results in Fig. 3(b), we can see that
the densest subgraphs with the optimal density g* are achieved
in the first spectral vector for most of the datasets, the second one
for six of the graphs, and only three graphs need to check more
than five singular vectors. There are 26 graphs where SPECGDS
stops for the early-stopping condition, while the rest need to
check all ten singular vectors due to the small optimal density
or flat power-law factor of the singular values.

Besides, we find that some subgraphs detected based on the
top kK — 1 vectors are also cliques with a smaller size than
the optimal one, like the soc-twitter and ca-DBLP-NET
networks. So, the above heuristic observation and the power-law
distribution of singular values contribute to the efficiency of
SPECGDS, and the small & is enough for good results.

2) Parameter Analysis: To verify the effect of the param-
eters on the efficiency of SPECGDS, including (I, s) in the
lazy-decomposition in Section VI-C and the rank k in
Algorithm 2, we select some real networks to test different
parameter settings and report the averaged runtimes of SPECGDS
over three trials.

Fig. 4(a)-(d) shows the result under varying (I, s) configura-
tions with k£ = 10 for four networks of various sizes, i.e., ca-
DBLP-NET, com-WikiTalk, com-Orkut, and soc-
Youtube. The first three obtain the optimal solution with
the early-stopping condition, and the last stops until the tenth
singular vector is checked. We can see that the algorithm reaches
the shortest runtime at different (I, s) w.r.t. different networks,
and the best configurations of them are (3,2), (4,1), (4, 2), and
(4,3), resp.; | = 1 usually results in the longest running time,
while they all achieved significant improvements in efficiency
compared with GREEDY. Therefore, we choose [ = s =3 as
a trade-off for true incremental decomposition when utilizing
the off-the-shelf SVD algorithms [87], although they may not
be the optimal settings for performance. Fig. 4(e) shows the
average runtimes of SPECGDS for different ranks & over soc-
Youtube. Near linear runtime w.r.t. k verifies the conclusion in
Theorem 5. The densest subgraph obtained at the third singular
vector, k = 3, leads to the shortest runtime.

B. Q2. Effectiveness

In this section, we verify that SPECGDS detects the densest
subgraphs with high quality, i.e., higher densities, in real-world
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k = 10. tg; is the running time of GREEDY as comparison and k* is the k& when the algorithm stops; Fig. (d) is the only one that does not meet early-stopping
conditions (doesn’t stop until the end). (¢) shows the running time of SPECGDS w.r.t k over soc-Youtube where [ = s = 3. k = 3 means the optimal solution
is obtained at the 3 rd singular vector, which is also the smallest & while guaranteeing the best density.

networks and accurately spots the injected subgraphs with dif-
ferent injection densities. Moreover, focusing on a large collab-
oration network, we empirically analyze the properties of the
detection results of GEPGDS, and we show that our methods
find significant contrast-dense subgraphs.

1) Density Improvement: Following the same setup in QI,
Fig. 1(b) shows the improvement ratio of optimal densities found
by SPECGDS compared to the GREEDY and SPOKEN algorithms.

As we can see, SPECGDS consistently outperforms SPO-
KEN by detecting denser densest subgraphs for all real-world
datasets. It even achieves more than 28.3 x higher density for the
soc-twitter network. Also, SPECGDS obtains the same or
denser (about 1.26 x for the com-Amazon) optimal density for
most graphs compared with GREEDY. There are four networks
whose optimal densities detected by SPECGDS have less than but
very close (> 0.996 ) densities detected by GREEDY, and two
networks with less than 0.9 density improvement. So, utilizing
the spectral distribution of the densest subgraph, SPECGDS can
improve the quality of the solution of GREEDY in most cases
by avoiding arbitrary tie-breaks in graphs for the removal in
GREEDY to some extent.

We explore the details of the case where SPECGDS achieves
density improvement compared to GREEDY. Fig. 6(a) shows
the detection trace of SPECGDS on the com-Amazon, which
is the largest connected component of the Amazon product
co-purchasing network [84]. The power-law distribution of its
singular values is flat, which means it consists of some similarly
structured subgraphs; this is verified by the detection results
for each singular vector, i.e., most of them have very similar
densities. SPECGDS terminates at & = 10 based on the parameter
setting. The optimal densest subgraph is S with g(S7) ~ 4.566
and |S7| = 290, while GREEDY returns a subgraph with a size
of 57,480 and a density of about 3.624, which means that it is
highly affected by those small and similar communities in the
original graph and recognizes them as a dense subgraph. This is
consistent with the conclusion in [22].

Thus, it helps to avoid being trapped in the local-optimal
solution by utilizing the spectral properties of the graphs as
SPECGDS. Fig. 6(b) illustrates the network structure of the
optimal densest subgraph, which forms a community with anode
degree of obviously more than 4.
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Fig. 5. Performance comparison for injection detection in the synthetic
graphs. Some dense subgraphs with different densities are injected into the
graph; the solid and dash lines correspond to two different subsets of amazon-
Art data. SPECGDS achieves similar accuracy as the GREEDY algorithm and
outperforms SPOKEN.

2) Injection Detection: We further evaluate the performance
of SPECGDS by performing a synthetic experiment where we
inject dense subgraphs as the ground truth. For a more realistic
setting, we also added extra edges as ‘camouflage’ between the
nodes in the selected injection subgraph and the rest.

We compared SPECGDS, GREEDY, and SPOKEN regarding
the F measure for detecting the injected patterns and reported
the average F-score over 5 trials. Specifically, we injected a
600 x 600 subgraph with different injection densities into the
Amazon-Art review subgraph of size 4 ' x 4 K. For compar-
ison, we selected two different cases with background densities
of 2.7E-5 and 3.4E-5.

Fig. 5 shows the detection accuracy of each method for
detecting injected dense subgraphs with different densities.
From the results for these low-density injected dense subgraphs,
we observe that SPECGDS achieves equally high accuracy as
GREEDY and is better than SPOKEN; the injected camouflage will
do harm to the detection performance more or less. SPECGDS
and GREEDY achieve the best stable results when the injection
density reaches a certain threshold (0.05 for no camouflage and
0.08 for random camouflage).

3) Case Study: As a case study for possible applications, we
also applied our methods to the DBLP co-authorship data [86]
from 2000 to 2017 to identify interesting contrast-dense patterns.
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Fig.7. Performance of GEPGDS algorithm over the DBLP co-authorship
data. The detected dense subgraph patterns and near linear scalability of
GEPGDS under different construction strategies of Q.

Fig. 6(c) shows the contrast dense subgraph patterns detected
by SPECGDS by constructing the positive residual graphs, G,..
Those densest contrast subgraphs are all cliques of different
sizes, which means the connections that form a clique appear
only in G; rather than G; 1 (or G;11).

As we can see, there are three extremely large cliques for 2017,
2015, and 2014, which are related to the publications in ‘Brain
Network and Disease’, ‘Neurology and Medicine’, and ‘Physics’
from some large collaborative groups of different disciplines.

Fig. 7 illustrates an example of the GEPGDS algorithm for
detecting the contrast dense subgraphs in DBLP datasets with
P/Q corresponding to g;41/g;; it is also near-linear scalable
w.r.t. the number of none-zeros nnz(P, Q) as Theorem 6 states.
More results are given in the supplement, available online.

C. Q3. Scalability

Fig. 1(c) shows the linear scaling of SPECGDS’s running time
with the number of edges in the graph, as Theorem 5 explains.
Here, we used the ca-Patents-AM network and randomly
subsampled different proportions of the edges of it to detect
the densest subgraph. The slope parallel to the main diagonal
indicates linear growth.
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VIII. CONCLUSION

In this paper, we propose the unification form of the gen-
eralized densest subgraph detection, GENDS, which subsumes
several well-known instances of related problems. We de-
vise SPECGDS and GEPGDS algorithms to solve the gen-
eralized problem based on spectral graph properties and a
greedy search approach. Our chief contributions include the
following:

® Theory & Correspondences: We propose a unified formu-
lation for the densest subgraph detection from different
applications; give a theoretical analysis of the principles of
network flow and spectral graph theory.

® Algorithm: We devised SPECGDS and GEPGDS, fast and
scalable algorithms to solve the GENDS problem.

e FExperiments: The efficiency of SPECGDS is verified on 40
real-world graphs. SPECGDS & GEPGDS run linearly with
the graph size and are effective for pattern detection in real
applications, i.e., they can find sudden bursts in research
co-authorship relationships.

However, there are still many directions for the possible
extension of this work. Among others, the interesting problem
is exploring similar spectral properties in the local scope for
streaming graphs and quickly detecting the dense temporal
subgraph. The arrival-time locality and connection locality help
to avoid exploring an enormous scope in a graph, and a fast
detection algorithm with theoretical guarantees that can coop-
erate with the spectral properties can expand the space of our
framework.
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