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ABSTRACT
Given a stream of money transactions between accounts in a bank,
how can we accurately detect money laundering agent accounts
and suspected behaviors in real-time? Money laundering agents
try to hide the origin of illegally obtained money by dispersive
multiple small transactions and evade detection by smart strate-
gies. Therefore, it is challenging to accurately catch such fraudsters
in an unsupervised manner. Existing approaches do not consider
the characteristics of those agent accounts and are not suitable
to the streaming settings. Therefore, we propose M��LAD and
M��LAD�W to detect money laundering agent accounts in a trans-
action stream by keeping track of their residuals and other features;
we devise A��S���� algorithm to� nd anomalies based on the
robust measure of statistical deviation. Experimental results show
thatM��LAD outperforms the state-of-the-art baselines on real-
world data and� nds various suspicious behavior patterns of money
laundering. Additionally, several detected suspected accounts have
been manually-veri�ed as agents in real money laundering scenario.

CCS CONCEPTS
• Information systems! Electronic commerce; • Theory of
computation ! Streaming, sublinear and near linear time
algorithms; • General and reference! Experimentation.
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1 INTRODUCTION
Money laundering is the process aiming at hiding the origin of ille-
gally obtained money. The estimated amount of money laundered
per year is 2 � 5% of the global GDP, or $800 billion - $2 trillion US
dollars and even a lower estimate is underlining the severity of the
issue [42]. Source money could come from illegal dealing of com-
modities, drug tra�cking, smuggling, and other criminal activities.
Once connected with organized crime and terrorist� nancing, this
will extensively damage the reputation of� nancial institutions and
threaten public security [22].

Thus, it raises the following question: given a stream of transac-
tions for money transfers between accounts, how can we e�ectively
detect money laundering agent accounts in real-time? Money laun-
dering is particularly hard to detect because fraudsters intention-
ally evade detection via innovative mechanisms, e.g., by funneling
money through multiple accounts, mixing them with legitimate
transactions, and making small transfers that fall just below the
reporting thresholds [14]. Quick and accurate detection of such
suspected accounts and behavior patterns in real-time transactions
is the main challenge.

To transfer large amounts of money while keeping each transac-
tion below a “safe” level, the agent accounts must make frequent
incoming connections from the source accounts (or agents) and
immediate or periodic outgoing connections to the target accounts.
These agent accounts exhibit suspiciously fast incoming and outgo-
ing transfer behaviors. Fig. 1 depicts an example of money launder-
ing agents about their transfer structures and behavior series.

Most existing money laundering detection approaches [15, 17,
19, 24, 29, 37] are designed for static records and cannot adapt
to streaming scenario. Methods that detect anomalies based on
dynamic graphs [3, 7, 8, 34] or outlier detection [4, 9, 28, 40, 41]
do not consider the characteristics of money-laundering behavior,
resulting in the inferior detection accuracy or not applicable.

In this paper, we proposeM��LAD, a scalable sketching algo-
rithm for depicting the behavior of money laundering agent ac-
counts in a transaction stream; it keeps track of the account residual
and computes some key statistical features to summarize their be-
havior;M��LAD�W accurately� ts complex patterns in a sliding
window manner. We devise A��S���� algorithm to detect anom-
alies based on the robust statistical deviation, which is theoretically
founded and explainable. Experiments on the real-world data show
that our method can fast and accurately detect various patterns
for money laundering (see Fig. 2(a)-2(b)) and� nd many suspicious
agent accounts (e.g., Fig. 1), some of which are manually veri�ed.
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Figure 1: Money laundering agent behavior pattern exam-
ple. (a) the connections of incoming and outgoing transfers
of a detected suspicious agent (red node, w.r.t. ?3 in Fig. 2(a)).
(b) the residual series over time of the suspicious agent ac-
count, where it showsmany suspicious periodical and inten-
sive spikes for receiving money and transferring all out at
once. The top sub�gure zooms into part of the time.

We make all of our algorithm and experimental code and the
majority of the data for the experiments available1.

Summary of Contributions.
• Streaming algorithm:Wepropose a novel approachM��LAD
to detect money laundering agent accounts in a transaction
stream, it is able to fast answer the detection query at any
time based on the statistical features (see Figure 2(a)).

• Explainable and Flexible: The proposed A��S���� uti-
lizes statistical deviations as the anomaly score instead of a
“black box”. Our method can easily adapt to and incorporate
di�erent scores from other outlier detection methods.

• E�ectiveness:Our method outperforms the state-of-the-art
baselines on the real-world bank data, it detects various sus-
picious behavior patterns (e.g., Figure 1), including manually
veri�ed fraudulent accounts and periodical patterns.

• Scalability: M��LAD is scalable, with linear time complex-
ity in the number of edges of the stream (see Figure 2(c)).

2 RELATEDWORK
In this section, we review relevant approaches about anomaly and
outlier detection, money laundering pattern detection.

(Semi-) Supervised learning methods: To involve more at-
tributes and handle high-dimensional data, machine learning mod-
els such as SVM [39], decision trees [43], and neural networks [20]
are applied to money laundering. [38] uses representation learning
techniques to utilize the information contained in graphs. [32] com-
bines network analysis to detect the groups of money laundering
activities. Although these algorithms detect money laundering ac-
tivities in supervised or semi-supervised manners, they su�er from
imbalanced class and lacking of adaptability. We focus on detecting
money laundering activities in an unsupervised fashion.

(Streaming-) Graph-basedmethods: Given as input a stream
of edges over time, G������� [1] scores the likelihood of each
edge in the stream based on a structural reservoir sample of edges.
SedanSpot [7] and [27] measure edge anomalousness in the stream
based on its prior occurrence, preferential attachment and mutual
neighbors (homophily). Spotlight [8] detects sudden appearance of
1https://github.com/BGT-M/MonLAD.

Table 1: Comparison of M��LAD and relevant approaches.
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many unexpected edges. [23] applies only when multiple graphs
with typed nodes and edges evolve simultaneously. Midas [3] iden-
ti�es micro-cluster based anomalies or suddenly arriving groups of
suspiciously similar edges. Nevertheless, those streaming methods
do not take into account the characteristics of money laundering.
[19] constructed a classi�er based on a set of mined rules to detect
suspicious transactions in a data stream. However, these traditional
rule based algorithms highly rely on domain knowledge and also
are easy to be evaded by fraudsters. FlowScope [17] and AutoAu-
dit [16] detect the� ow of money laundering in a multipartite graph,
however, they cannot handle streaming edges and fail to capture a
variety of di�erent behavior patterns well.

Table 1 comparesM��LAD and other related methods for the
problem of money laundering pattern detection in streams.

3 PROBLEM FORMULATION
Here, we summarize three key traits of typical money laundering
transfers and then formally de�ne our problem.We use “fan-in” and
“fan-out” to refer to the money transfer into and out of an account
(especially an agent in intermediate accountsM) as a metaphor for
fan-like incoming / outgoing connections in social networks.

3.1 Key Traits
T���� 1 (F���F ����� ���F ������). “Dirty money” will be

divided into multiple parts and transferred from sources to destina-
tions; these small-amount but multiple transfers� owing through M
are usually completed within a short period.

Thus, by controlling the amount per transfer and the number of
transactions, fraudsters evade detection by manipulating a large
amount of money. The sooner these transactions complete, the
more the fraudsters gain and lower the risk.

T���� 2 (F��������B�������� ). Agent accounts crave to
frequently reach a balanced state by fan-outs (transfer out to other
agents or targets), upon receiving all the money or reaching a volume
threshold of multiple fan-ins from the sources.

The remaining money in the agent accounts will be subject to
the risk of being detected or frozen, particularly for large amounts.
Therefore, fraudsters tend to remain for as little time as possible
unless they can empty the account. The remaining amount is then
also be used as camou�age by some smart fraudsters.

T���� 3 (H���T��������� ). To process a large amount of
money in a short period with a limited number of agent accounts in
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(a) Heatmap of the statistical features from CBank.
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(b) Comparison of speed and accuracy (F1 score).
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(c) M��LAD scales linearly with # of edges.

Figure 2: Performance of proposed M��LAD on real data (CBank). (a) Heatmap of the statistical features used in M��LAD,
where criminal-icon labels 12manually-veri�ed accounts involved inmoney laundering and other outliers also exhibit obvious
suspicious behavior pattern. (b) M��LAD outperforms the baselines in two di�erent settings with empty and� lled symbols
for each method. (c)M��LAD runs in time linear to the number of edges in a stream.

M, achieving more balanced counts or transferring a high amount
each time is required.

Accounting for limited accessible resources (e.g., the number
of agent accounts) and time constraints, fraudsters will multiplex
accounts in M to conduct the same behavior for reducing the cost
and achieving “economy of scale”.

The distinctive behaviors of agents involved inmoney laundering
can be characterized with the above traits, which distinguishes from
the normal. As opposed to methods detecting anomaly patterns in
static data, we spot the money laundering anomaly patterns from a
large-scale transaction stream and detect the agent accounts.

3.2 Problem De�nition
Let G = (V, E,W,T) be a time-evolving directed graph for the
money transfers, E = {41, 42, · · · } denotes a stream of edges, and
the vertex setV represents the accounts. Each arriving edge is a
tuple 4 = (D, E,FD,E, C) consisting of a source vertex D, a destination
vertex E , a weightFD,E 2W 2 Z+, and a time of occurrence C 2 T
at which the edge is added to G. We use the term vertex and account
interchangeably throughout the paper in terms of our scenario.

We treat G as a multi-graph, i.e., edges can be created multiple
times between the same pair of vertices. Moreover, we do not as-
sume that verticesV are known a prior in the edge stream. Table 2
gives the complete list of symbols we use.

The money laundering agents detection problem is de�ned as

P������ 1 (M����L ���������A�����D �������� ��S�����).
Given a stream of transfer records {41, 42, · · · }, where each item 4 =
(D, E,FD,E, C) denotes a money transfer with an amount ofFD,E > 0
occurring at time C from the account D to the account E ;

- Find the group of most suspicious agent accountsM;
- such that each of accounts inM satis�es the Traits 1-3.

4 PROPOSED METHOD
In this section, we� rst de�ne some key statistics to recognize the
patterns of agent accounts, then proposeM��LAD to sketch the

Table 2: Symbols and De�nitions.

Symbol De�nition

BCD Balanced state of the account D at time C
'D (C) Residual of the account D until C
BD (C) the number of times of balance that the

account D achieves until C
FD (C) the total number of e�ective fan-ins of D

within balance until C
XD? , X3>F= minimum thresholds for an e�ective fan-in

and fan-out
minCD , maxCD minimum and maximum residual of D at C

during reaching balance

statistics in a stream. Finally, we design A��S����, an intuitive
way to detect the suspicious accounts in money laundering setting.

4.1 Anomalous Balance Patterns
We de�ne some statistics to depict the behavior of agent accounts
in an edge stream.

Weighted in-degree and out-degree: Given time C , we de�ne
the weighted in-degree and out-degree2 of the account D until C as

3+D (C) =
’
E2V

C’
C8 24 (E,D,FE,D,C8 )

FE,D; 3�D (C) =
’
E2V

C’
C8 24 (D,E,FD,E,C8 )

FD,E .

Residual: We de�ne the residual as the di�erence between the
weighted in-degree and out-degree of the account D until C ,

'D (C) = 3+D (C) � 3�D (C) (1)

Note that the residual might also be negative, since the account
state (initial residual) is unknown at C0. 'D (C) only indicates the
residual after the� rst transaction of the account D occurred during
the observation period. Thus, we de�ne two key concepts as follows:

De�nition 1 (Reaching Balanced State). An account D reaches
a balanced state at C (denoted as BCD = 0) after a fan-out transfer,
2They are equal to the total transfer-in and transfer-out amount until C respectively.
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Figure 3: The residual series of the account D over time, as a
running example of M��LAD with XD? = X3>F= = 20, n = 3.

leading its residual to being no more than the minimum of the
residual between the most recent time g and C , where g = 0 or
BgD = 0, while not balanced at C � 1 (i.e., BC�1D = 1) 3.

An account reaches a balanced state when the money transferred
into it is� nally transferred out. So we keep track of the minimum of
the residual to� nd those balanced states. Let BD (C) be the number
of times of balanced state that D 2 V reaches until time C .

De�nition 2 (E�ective Fan-in). A money transfer into an account
D is called an e�ective fan-in if and only if

• the accumulated money transferred into D (the total fan-in)
reaches a threshold 4 since the last balanced state;

• all accumulated money is� nally transferred out to reach the
next balanced state.

In money laundering scenario, we consider the number of in-
coming transfers after an e�ective fan-in (inclusive) until reaching
a balanced state. We use fD (C) to denote the number of e�ective
fan-ins of the account D achieves at time C since the last balanced
state (D may (re-) reach a balanced state depending on the residual
afterward), and FD (C) as the accumulative fD (·) from the initial to
the last balanced state before C .

Let XD? be the minimum threshold for an e�ective fan-in and
X3>F= be the minimum threshold for an fan-out to be a balanced
state. Consider a certain balanced state of the account D from C0
(the initial time or the end of the previous balance) to C: , for any
C 2 {C0, · · · , C: }, maxCD (minCD ) denotes the maximum (minimum)
residual during the process, which is traced by BCD , i.e. BCD = 0 if
C 2 {C0, C: } otherwise BCD = 1.

Example 1 illustrates an explanation based on Figure 3, which
shows the change the residual 'D (C) of D in [C1, C11]. Note that the
residual becomes negative at C 2 {C5, C7, C8, C11} due to the unknown
'D (C0), while it must hold that 'D (C0) � max{|'D (C5) |, |'D (C11) |}.

E������ 1 (C������E������). The changes of residual 'D (C)
in Fig. 3 come from 10 transfers, i.e., 4 fan-outs (at C3, C5, C7, and
C11) and 6 fan-ins (at other times); it reaches balanced state at C5
and C11 according to the de�nition, i.e., BC5D = BC11D = 0. The residual
achieves a new minimum at C5 (i.e. minC5D ) since C1. Assuming XD? =
X3>F= = 20, fD (C4) = 1 due to the e�ective fan-in at C4; FD (C5) = 1
and BD (C5) = 1 since D reaches balanced state only once from C1 to
C5; fD (C10) = 4 since the e�ective fan-in at C6 and there are 3 fan-ins
after C6; FD (C11) = FD (C5) + fD (C10) = 5 and BD (C11) = 2 due to the
second balanced state at C11. In addition, maxC2D = maxC3D = 'D (C2),
maxC4D = maxC5D = 'D (C4); minC2D = minC3D = minC4D = 'D (C1). We can
get other relevant values (states) after C5 similarly.
3Here ‘1’ means waiting for balanced state and ‘0’ refers to the start (end) of balance.
4Here the threshold is used to denoise some small transfers in and out of an account.

Note that FD (C) � BD (C) always holds since being in the balanced
state contains at least a fan-in (including e�ective fan-in) at any
time. Regarding the money laundering scenario, some suspicious be-
havior patterns corresponding to di�erent types of anomalies [30],
including transfers in illegal exchange, illegal gambling, drug traf-
�cking, etc. It can be derived as follows:

• P1. FD (C) ⇡ BD (C): one-time fan-in and immediate fan-out;
• P2. FD (C) � BD (C) & a small BD (C): dispersive fan-ins and
few fan-outs.

• P3. FD (C) > BD (C) & a large BD (C): dispersive fan-ins and
fan-outs;

4.2 OurM��LAD Algorithm
BD (C) and FD (C) are core features to describe the behavior of the
account D in a transfer stream; the other statistics, including fD (C),
BCD ,minCD , andmaxCD , are auxiliaries; they will constantly be updated
as the transaction arrives. So, we design the following rules to
update and count. Alg. 1 gives the high-level pseudo-code of our
methodM��LAD.

When an edge 4 = (D, E,FD,E, C) arrives, we need to determine
whether the source vertex D reaches a balanced state due to the fan-
out and whether the target vertex E is waiting to reach a balanced
state or will start a new process just after the previous balance.
The states BCD and BCE will be updated according to Eq. (2) and Eq. (3)
respectively, where the contribution ofFD,E to the residuals 'D (C)
and 'E (C) has been counted by updating 3�D (C), 3+E (C),

BCD =

(
0 if maxC�1D �'D (C) > X3>F= & 'D (C)  minC�1D +n,
BC�1D otherwise.

(2)
This means that BCD will be in a balanced state if a large enough fan-
out 4 almost clears the residual 'D (C) (close to minC�1D ), otherwise
the previous state holds. Here, we introduce a small residual n > 0
to nullify the fraudsters’ attempts to evade detection by keeping a
low balance. To be more precise, n is the minimum cost of fraudsters
and also the maximum tolerance of the detector.

BCE =

(
1 if 'E (C) �minC�1E > XD? ,

BC�1E otherwise.
(3)

that is, BCE is waiting to reach a balanced state if the residual 'E (C)
is still at least XD? greater than the previous minimum minC�1E ,
otherwise the previous state holds.

For the target vertex E , fE (C) will be updated if Eq. (4) satis�es
BCE = 1 (as it is or due to the fan-in 4). For the source vertex D, if it
reaches a balanced state due to this fan-out, i.e. BCD = 0 & BC�1D = 1,
then fD (C) will be added onto FD (C) as Eq. (5) shows and then be
reset to 0, BD (C) will also be updated as Eq. (6) shows. Otherwise,
they will keep the same as the previous state.

fE (C) =
(
fE (C � 1) + 1 if BCE = 1,
fE (C � 1) otherwise.

(4)

FD (C) =
(
FD (C � 1) + fD (C) if BCD = 0 & BC�1D = 1,
FD (C � 1) otherwise.

(5)

BD (C) =
(
BD (C � 1) + 1 if BCD = 0 & BC�1D = 1,
BD (C � 1) otherwise.

(6)
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Algorithm 1M��LAD: Statistical features in stream

Input: Stream of edges over time; thresholds XD? , X3>F= , and n .
Output: Statistical features per vertex.
1: while new edge 4 = (D, E,FD,E, C) is received do
2: if D (E) never appeared then ù Initialization for newcomers
3: I���������(D (E), C � 1) ù For vertex D or E
4: 'D (C) = 'D (C) �FD,E ; 'E (C) = 'E (C) +FD,E

ù Update ‘state’ for source D and destination E resp.
5: update BCD , BCE based on Eqns. (2) and (3) respectively
6: sequentially update fE (C), FD (C), BD (C) with Eqns. (4)-(6)
7: if BCD = 0 & BC�1D = 1 then
8: fD (C) = 0 ù Reset fD (C)
9: update minCD and maxCE based on Eqns. (7)-(8)
10: output BD (C), FD (C), BE (C), FE (C).
11: procedure I���������(D, C ) ù Vertex speci�c variables
12: 'D (C)  0, BD (C)  0, BCD  0, fD (C)  0;
13: minCD  0, maxCD  0

Afterward, for the vertex D with the fan-out 4 , minCD will be
updated by the current residual 'D (C) if it reaches balanced state or
'D (C) is less than minC�1D ; for the vertex E with the fan-in 4 , maxCE
will be updated by the residual 'E (C) if E starts a new process and
waits for reaching a balanced state (BCE = 1 & BC�1E = 0) or 'E (C) is
greater than maxC�1E . Eq. (7) and (8) depict the above update rules.

minCD =

(
'D (C) if (BCD = 0 & BC�1D = 1) or 'D (C) < minC�1D ,

minC�1D otherwise.
(7)

maxCE =

(
'E (C) if (BCE = 1 & BC�1E = 0) or 'E (C) > maxC�1E ,

maxC�1E otherwise.
(8)

In Algorithm 1, for each edge 4 in the stream, M��LAD will
create and initialize some vertex-speci�c variables via I���������
for the newcomers if D or E never appear, then it performs update
with the above rules, and� nally outputs the statistical features of
each node at the current time, i.e., B⇤ (C) and F⇤ (C).

Figure 3 illustrates a running example of M��LAD. The state BCD
changes to 0 at C5 and C11 due to reaching a balanced state, maxCD
changes at C 2 {C2, C4, C6, C9, C10}, and minCD changes at C5 and C11.

4.2.1 M��LAD with sliding window: M��LAD�W. In real appli-
cations, transaction history involves a variety of accounts with
di�erent behaviors, which can be personal or corporate; fraudsters
will avoid trading too frequently to evade detection, which di�ers
from the behavior of company accounts that are used for frequent
settlement or lopende rekening, so the global statistical features in
M��LAD may be inappropriate to distinguish them. Furthermore,
entirely accumulative counting also can result in some false pos-
itive detection, since normal accounts can also achieve balanced
states periodically due to the credit card payback or fund transfers
after payroll, thus we should rather capture the local behavior of a
short period of time. So, we propose M��LAD�W, as the variant
of M��LAD with a sliding time window, to compute the local fea-
tures of B and F. We can use various statistics of the features w.r.t
windows,i.e., max, mean. The detail of M��LAD�W algorithm is
given in the supplement.

Algorithm 2 A��S����: Anomaly scoring with EVT

Input: Accounts features B+⇤ and F0⇤ = (F⇤ � B⇤); threshold ? and
percentile U for� tting the P����� distribution.

Output: Suspicious vertex setM
1: M  {; }

ù Use the �&' and &3 to� nd the truncation thresholds
2: Compute �&'s and &3s for B+⇤ and F0⇤ to get the b1 and f1

ù Compute thresholds for the upper tails part of the distributions
3: b2 =P�����(?,U,

�
B+D | F0D = f1;D 2 V

 
)

4: f2 = P�����(?,U,
�
F0D | B+D = b1;D 2 V

 
)

5: for b 2 [1, b1] do ù Anomalies in Part I.
6: f̄  P�����(?,U, {F0D | B+D = b})
7: M = M [ {D | B+D = b & F0D > f̄}
8: for D 2 V do ù Anomalies in Part II.
9: if

�
B+D > b2 & F0D > f1

�
or

�
B+D > 11 & F0D > f2

�
) then

M = M [ {D}
10: for f 2 [0, f1] do ù Anomalies in Part III.
11: b̄ P�����(?,U, {B+D | F0D = f})
12: M = M [ {D | B+D > b̄ & F0D = f}
13: returnM
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Figure 4: The heatmap andmarginal distributions of the sta-
tistical features fromCBank and the example forA��S����
algorithm. B+⇤ and F0⇤ = (F⇤ � B⇤) are used, and the result at
the end of the observation time are shown. A��S���� de-
tects outliers in Part I, II, III, while the vertices in the high-
density region (Part IV) are regarded as normal.

4.3 A��S����: Anomaly Scoring
Based on the above features of each account, we design the scoring
schema, A��S����, to measure their suspiciousness in the money
laundering scenario, respond to the customer queries at any time C ,
and report a group of most suspicious agent accounts asM.

The Generalized Pareto Distribution (GPD) is a 3-parameter
distribution and has been used to� nd the law of extreme events
(tails) within extreme value theory (EVT) [5] (Ref. the supplement)

The second theorem of EVT is the Pickands-Balkema-de Haan
theorem [2, 25]. It states that given a random variable - , let< 2 R
and de�ne a new random variable -< , that intuitively represents
the tail of- past threshold<; de�ne �< as the distribution of- �<
conditioned on - > <. Then, the conditional excess at threshold<
has CDF �< (G) = P(- �<  G |- > <).
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As the traits summarized in Sec. 3 and description in Sec. 4.1
show, the behavior of the agent accounts usually has great di�er-
ence with the normal, this justi�es using GPD to model the upper
tail of the distribution of their features. The empirical result from
the real data as shown in Figure 4 also veri�es our motivation, i.e,
the distributions of B+⇤ and F0⇤ = F⇤ � B⇤ are highly skewed5.

With the arrival of edges of a stream,M��LAD outputs BD (C)
and FD (C) for all seen vertices D 2 V at time C (M��LAD�W is
also suitable). So, we design A��S���� in Alg. 2 to answer the cus-
tomer’s query for anomalies in the stream at any time. A��S����
takes the positive features B+⇤ and F0⇤ = F⇤ � B⇤, and the probability
threshold ? and percentile U for Pareto distribution as input,�nally
returns the subsetM containing the most suspicious vertices.

The function P����� uses the upper-tails part exceeding at
threshold<, corresponding to samples at the bottom 1 � U of the
ordered population, to� t its parameters, and then outputs the min-
imum value of� tted data G such that it satis�es P(- �< > G |- >
<) = 1 � �< (G) < ? for some parameter ? and U , thus ? plays a
similar role as the P-value to test the null hypothesis (i.e., the points
are normal). we set U = 98% in experiments as [36].

Based on the correlation between the features as Figure 4 shows,
A��S���� detects those anomalies in three parts over the space of
the joint distribution. Speci�cally, the decision boundaries b1 and f1
are determined by&3 + ⇤ �&' with �&' = &3 �&16, b2 and f2 are
determined by the P����� which takes in the samples {D}s with
F0D = f1 and B+D = b1 respectively; we set  = 1.5 which is typically
used for normally distributed data [13]. Then, the outliers in Part I,
II, III are detected one by one (Lines 5 - 12), while Part IV is regarded
as the normal. The red dashed line in Figure 4 highlights the�nal
decision boundary for detecting anomalies. In general, b2 > b1 and
f2 > f1 are always true for su�cient data from large-scale stream;
we will set b2 = b1 and f2 = f1 for some possible situation where
b2  b1 and/or f2  f1 due to the ill-posed data distribution.

T������ 3 (T���C��������� 7). The time complexity of the
M��LAD algorithm is linear with the number of edges in the stream,
$ ( |E |); M��LAD�W uses $ ( |) |

B · |VC |) time to compute the window
feature in addition. A��S���� scales linearly with the number of the
seen vertices, $ ( |VC |), at current time C .

5 EXPERIMENTS
We design experiments to answer the following questions:

(1) Q1. E�ectiveness for pattern detection: How accurately
does M��LAD 8 detect expected behavior patterns (P1-P3)
of agent accounts for money laundering? Does A��S����
have advantage over other baselines?

(2) Q2. M��LAD spots real-world agent accounts: What
patterns doesM��LAD(-W) detect in real-world datasets?
How about the behavior of the suspicious agent accounts?

(3) Q3. Scalability: Does our method scale linearly with the
number of edges?

Datasets:We use two real-world datasets, the ‘CBank’ dataset
from an anonymous bank under an NDA agreement; the Czech
5We use the di�erence feature since F⇤ � B⇤ always hold for any vertex (‘⇤’).
6&1 and&3 represent 1st and 3rd quartile of samples respectively.
7The detailed proof of the Theorem 3 is given in the supplement.
8We use M��LAD(-W) to refer toM��LAD(-W) followed with A��S���� here.

Table 3: Statistics of Real-World Datasets.

Dataset # of Nodes # of Edges Time Span (T)
CBank 8.77 M 47.44 M Aug.7 - Aug.13, 2017

CFD [21] 11.37 K 273.51 K Jan.1,1993 - Dec.1,1998

Financial dataset (‘CFD’) is an anonymous transferring transaction
data of Czech bank released for Discovery Challenge in [21]. Table 3
lists the statistical information of the two datasets.

Baselines:We select followingmethods as baselines, Spotlight [8],
Midas-R [3], and SedanSpot [7] that detect anomalies in edge streams,
and D-Cube [33], a batch yet fast algorithm that outputs close or
better accuracy than its streaming version, DenseAlert [34].

Evaluation Metric:We evaluate the performance with F1 score.
For the baselines detecting suspicious edges rather than vertices,
we treat an edge as a hit if any of its ends are labeled anomalous. For
a fair comparison, we report the best F1 score for those baselines
returning a rank of suspicious edges.

Experimental Setup: All experiments are carried out on a
2.7GHZ Intel Xeon E7-8837 CPUs processor and 512GB RAM run-
ning Linux.M��LAD is implemented in Python. In all the exper-
iments, we set U = 98%, ? = 0.05 and XD? = X3>F= = n = 10k for
our methods (unless speci�ed otherwise). We average the results
over 5 trials for all synthetic experiments for anomalies injection.

5.1 Q1. E�ectiveness in pattern detection.
5.1.1 E�ectiveness of M��LAD. Considering the various be-
havior patterns in money laundering scenario as summarized in
Sec. 4.1, we adopt numerous injection schema upon the CBank
dataset to verify M��LAD’s performance for spotting di�erent
kinds of anomalies. Based on the characteristics of patterns P1-P3,
we control the behavior of agent accounts via di�erent f⇤ and B⇤.

We use the clean CBank data, i.e., removing all suspicious ac-
counts detected by M��LAD, as background for injection. For pat-
terns P1 and P2, we inject |M| = 200 agent accounts as anom-
alies and randomly select the source or target accounts for money
transfer-in and out; the amount of money for each transaction is
sampled from a Dirichlet distribution 9 to ensure that the total
amount (no more than 1⇢8) is uniformly assigned to each edge; all
the money transferred into an account is clear out and reaching
a balanced state� nally; the time of each transaction is randomly
sampled from the time range.

Figure 5(a)-5(b) show the performance of M��LAD and baselines
for detecting di�erent patterns. We report the results of M��LAD
with di�erent ?s (0.01 to 0.05 with step 0.01) for clear comparisons.
As we can see, M��LAD consistently outperforms all baselines for
P2 pattern by achieving at least 68% improvement in Fig. 5(a) (with
? = 0.01). Fig. 5(b) demonstrates the performance for detecting
P1 behavior pattern, we can see FlowScope also achieves high
accuracy (triangle marked) since these found accounts have fewer
transfer connections but higher average amounts. Compared with
Fig. 5(a), however, FlowScope gives the worst accuracy for low-
density cases. We compare the accuracy and speed with baselines

9It generates one sample (edge) each time with the parameter U = [U1, . . . , U|E | ] with
U8 = 100 for 1  8  |E | to guarantee a small variance among the sampling.
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(a) F1 score vs. f⇤ with B⇤ = 4 (b) F1 score vs. B⇤ with f⇤ = 1 (c) F1 score vs. |M | with B⇤ = 4&f⇤ = 200

Figure 5: Performance comparison in F1 Score with standard deviation. Our method consistently outperforms baselines in
detecting injected anomalies, the shadow area shows the performance range of M��LAD for ? varying from 0.01 to 0.05.

under two speci�c settings, f⇤ = 500 & B⇤ = 4 in Fig. 5(a) and
f⇤ = 1 & B⇤ = 1: in Fig. 5(b). Fig. 2(b) shows the result, where the
empty and� lled markers correspond to the above two cases; we
can see that M��LAD achieves nearly 4⇥ speedup over FlowScope
with very similar accuracy and outperforms other competitors.

We evaluate the performance of M��LAD against the number
of injected agent accounts (|M|) and give the result in Fig. 5(c).
M��LAD achieves the best F1 score and has obvious advantages
over baselines; its accuracy decreases as |M| increases for ?  0.02,
since the injection gradually dominates the tail part of data, result-
ing in lower recall when the precision has reached the maximum.

5.2 Q2. Spotting real-world agent accounts
5.2.1 Analysis of M��LAD. We apply M��LAD to CBank data
for detecting suspected real-world agent accounts and analyze their
behavior patterns. As Figure 2(a) shows, M��LAD spots various
types of anomalies for money laundering where the decision bound-
ary is denoted as the red dashed line. In the absence of labels, we
randomly select some detected accounts from di�erent parts for
case study about their transfer structures, residual series, and statis-
tical features (B⇤ & F⇤). Moreover, 12 accounts are manually veri�ed
to be fraudulent agents, they can be easily and accurately caught by
M��LAD and are labeled with ‘criminal-icon’ near ?2 in Fig.2(a).

Figure 1 and Figure 6 show the behavior patterns of some selected
accounts (?1�?4). For the account ?3 in Fig. 1, it receives 63 transfers
from two di�erent accounts (⇡ 34.72" in total) and transferred
them to 6 other accounts multiple times, there are two accounts
accounted for the majority and other small amount transfers are
very likely to be camou�age transactions; from the residual series,
we can see that a large amount of money� owed through ?3 with
P1 behavior leading to reaching a number of balanced states, which
is a typical suspicious pattern.

Additionally, from Figure 6(a)-6(b), we� nd that the account ?1
has similar transfer structure with ?3, but it has multiple fan-ins
with the behavior similar as P2 pattern as Fig. 6(c) shows; so ?1
transfers money in a mixed manner of P1 and P2, i.e. P3. As we
observe from Fig. 6(d)-6(f), the fan-ins of the veri�ed account ?2 is
more than 1, 000⇥ its fan-outs, which is consistent with the typical
P2 pattern. For the account ?4, it has the same behaviors as P2
based on the zoom-in sub-�gure in Fig. 9(b) and Fig. 6(i), while it is
less suspicious than ?2 due to close to the decision boundary.

In contrast, the residual of the normal accounts in Part IV rarely
reaches balanced states, we provide detailed analysis for the be-
havior of some randomly selected normal examples in the supple-
mentary. Therefore, M��LAD indeed� nds some suspicious agent
accounts for money laundering.

5.2.2 Analysis of M��LAD�W. We verify the e�ectiveness of
M��LAD�W for detecting suspicious behavior with periodical bal-
anced pattern and compare with M��LAD. We use CBank dataset
and set the parameter of M��LAD same as the Sec. 5.2. We set
window size  = 1⌘, sliding stride B = 1⌘ forM��LAD�W which
use the maximum value of the statistical feature series as score,
? =1e-3 for A��S����.

Figure 7(a) illustrates residual series of two detected accounts as
examples for the case study. The account at the bottom is detected by
M��LAD�W but not M��LAD. It achieves high-frequent balanced
states within one hour (each takes less than 5<8=), which is rather
suspicious; it was active only on Aug. 4th, which results in a smaller
value of B than the Bs of those normal accounts that have been
active since the early days from the point of cumulative counting.
Therefore, the anomalous accounts like above mentioned one will
not be detected by M��LAD. Furthermore, we randomly select
another account that has the same features (B = 8 & F0 = 1) from
M��LAD as the above account. As shown in the top of Fig. 7(a),
we can see that it had a similar periodical balanced pattern, yet
with a much longer period (i.e. ⇡ 0.5 3). Although the top one is
more likely to be a normal account, M��LAD cannot distinguish it
from the more suspicious one at the bottom. In contrast, M��LAD�
W is able to avoid such false positive (FP) detection since it only
counts the number of features within a speci�ed time window. For
M��LAD�W, the feature values of these accounts are B = 1&F0 = 0
(top) and B = 7&F0 = 1 (bottom).

Therefore, M��LAD�W is able to capture the local behavior
pattern while avoiding some FN and FP cases caused by the accu-
mulative e�ect inM��LAD.

5.2.3 Development at a real-world platform. We also apply
M��LAD to a real money transfer dataset collected from Tencent’s
WeChat App, which consists of millions of accounts and transaction
records for one week 10 with the format (source, destination, time,
amount).

10Concrete information is not public due to privacy protection.
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Figure 6: Case study of the detected anomalies in real-world data (CBank). Here illustrate the transfer structure, residual series
'⇤ (C), and B⇤ (C) & F⇤ (C) of those randomly selected suspicious accounts (?1, ?2, ?4) labeled in Figure 2(a).
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Figure 7: Performance for real data and case study. (a) Two
example detection cases with periodical pattern as the FP
(false positive) from M��LAD and the TP (true positive)
from M��LAD�W. (b) The heatmap of the features from
M��LAD based on the real data from Tencent Wechat App
and some manually veri�ed suspected fraudster accounts.

Figure 7(b) shows the heatmap of the statistical features. Due
to the limitation of accessible data, we only randomly selected the
most suspicious 30 accounts that are marked with red circles from
the detection parts in Fig. 7(b), and manually veri�ed according to
the pro�le information, they turn out to be some suspected money
laundering accounts (we use ? =1e-3 for A��S���� here).

5.3 Q3. Scalability
We measure how rapidlyM��LAD’s update time increases as the
stream grows. We used the accumulative edge streams of CBank
per 12 hour and gives the running time of the algorithm until the
speci�c time. Figure 2(c) shows the linear scaling of M��LAD’s
running time with the number of edges of the stream.

6 CONCLUSIONS
In this paper, we propose M��LAD and M��LAD�W for detect-
ing the money laundering anomaly agent accounts in a transac-
tion stream; we introduce a statistical score schema, A��S����,
to� nd anomalies that have obvious deviation behavior. The ex-
periments on real-world datasets show that our method M��LAD
achieves state-of-the-art performance and interpretable results, and
our methods are also linearly scalable.
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A APPENDIX
A.1 E�ectiveness of A��S����.
Given the statistical features (B⇤ and F⇤), how does the A��S����
algorithm perform? Here, we verify the e�ectiveness of A��S����
by directly injecting various anomalies into the feature space and
compare its detection performance with some classic outlier detec-
tion approaches.

In this experiment, we use CFD dataset and inject anomalies into
three di�erent parts in the F

0
⇤ vs.B⇤ space like Figure 2(a).We choose

6 methods implemented in PyOD [45] as baselines, KNN, PCA,
Clustering-Based Local Outlier Factor (CBLOF), Histogram-based
Outlier Score (HBOS), Isolation Forest (IF), Minimum Covariance
Determinant (MCD). Here, we adopt FAUC (the Areas Under the
Curve of F1 metric) [17] to measure the performance and normalize
B⇤ or F

0
⇤ in horizontal axis to make FAUC in [0, 1]; the higher

FAUC indicates better performance. We set U = 0.5 and ? = 0.2 for
A��S���� due to the limited data size. The parameter setting of
baselines and detailed injection schema are given in A.6.

Table 4: A��S���� outperforms other outlier-detection
methods over CFD dataset

Anomalies type CBLOF HBOS IF KNN MCD PCA A��S����

Part I (F
0
⇤) 0.706 0.202 0.494 0.131 0.188 0.573 0.741

Part III (B⇤) 0.661 0.324 0.775 0.554 0.839 0.590 0.687

All Parts (F
0
⇤) 0.791 0.612 0.845 0.570 0.750 0.848 0.810

All Parts (B⇤) 0.808 0.608 0.776 0.556 0.733 0.752 0.736

Average 0.742 0.437 0.722 0.453 0.627 0.691 0.744

Table 4 shows the detection results of di�erent detectionmethods
for various injection settings. On average, A��S���� achieves the
best performance and is in par with CBLOF and IF, they have own
strength for di�erent parts which corresponds to di�erent behavior
patterns. However, A��S���� is more interpretable and intuitive
due to unitizing the statistical deviations for the money laundering
scenario. Besides, we can see that some method also performs well
in some speci�c parts, e.g, MCD for ‘Part III’ and PCA for ‘All Parts
(F0⇤)’; HBOS and KNN have the worst performance. In summary, our
M��LAD is more� exible to in favor of di�erent outlier detection
methods and achieves appealing results.

A.2 M��LAD�W algorithm
Algorithm 3 describes the framework of M��LAD�W, which can
seamless connect withM��LAD, it computes and outputs the local
statistic features of the current time window with Line 4-14.

As can be seen, M��LAD�W yields BF8= and FF8= for all ac-
counts, forming a group of series, across the time window; thus we
can also analyze trends or statistics for them, like maximum, mean,
variance, etc. The maximum value is used in our experiments.

A.3 Generalized Pareto Distribution
Speci�ed by the parameters location `, scale f > 0, and shape b ,
the cumulative distribution function (CDF) of GPD is de�ned as,

GPD`,f (C ),b (G) =
8>><
>>:
1 �

⇣
1 + b (G�`)

f

⌘�1/b
if b < 0

1 � exp (�G�`f ) if b = 0

The second theorem of EVT is the Pickands-Balkema-de Haan
theorem [2, 25]. It states that given a random variable - , let< 2 R
and de�ne a new random variable -< , that intuitively represents
the tail of- past threshold<; de�ne �< as the distribution of- �<
conditioned on - > <. Then, the conditional excess at threshold<
has CDF �< (G) = P(- �<  G |- > <).

Being agnostic to the distribution of original data under a weak
condition, the key properties of GPD are its� exibility in smoothly
interpolating between light- and heavy-tailed regimes (extreme
events), and its universality property.

P������� 1 (U����������� �� GPD). Let � be any distribution
function from a broad class of distributions11. For the CDF of the GPD,
there exists b and f (<) that approximate the tail of � arbitrarily
closely, that is, lim<!<max supG |�< (G) � GPD0,f (<),b (G)) | = 0,
where<max is the right endpoint of � and can be1.

Algorithm 3M��LAD�W: M��LAD with sliding time window

Input: Stream of edges over time; thresholds XD? , X3>F= , and n;
window size  , sliding stride B .

Output: Statistical features per window.
1: C1468= = C4=3 = 0;
2: Initialize feature vectors BC1468= (⇤) 0, FC1468= (⇤) 0
3: while new edge 4 = (D, E,FD,E, C) is received do
4: if C > C4=3 then ù Receive an unseen time tick
5: BC4=3 (⇤) B(⇤) , FC4=3 (⇤) F(⇤) ù Record for C4=3
6: C̄ =  + B ⇤ b C� B c ù Bound of current window
7: if C4=3 �  & C4=3  C̄ then ù Window update

ù Compute feature vectors w.r.t. the current window
8: BF8= = BC4=3 (⇤)� BC1468= (⇤)
9: FF8= = FC4=3 (⇤)� FC1468= (⇤)
10: C1468=  <0G8

�
C8 |C8  C1468= + B

 
11: for C8 < C1468= do ù Window slides with B
12: Remove BC8 (⇤) and FC8 (⇤)
13: yield BF8=, FF8= ù Output the current features
14: C4=3  C

15: B(D), F(D), B(E), F(E) =M��LAD(4,XD? , X3>F=, n)
return

A.4 Analysis of Time Complexity
ForM��LAD, for each edge, the algorithm will update the corre-
sponding variables according to the rules, which takes $ (1). Thus,
the time complexity of theM��LAD algorithm is linear with the
number of edges in the stream, $ ( |E |).

ForM��LAD�W, additionally, the most time consuming steps
are Lines 8 � 13 in Algorithm 3, which are executed at the end
of each window. Let |T | be the number of time ticks,  be the
window size and B be the sliding stride size, then the number of
timewindowswill be |T |� 

B +1; vectors subtraction at line 8�9 takes
$ ( |VC |). Therefore, the additional time complexity of M��LAD�W
is $ ( |T |

B ⇤ |VC |).
11This class includes almost all commonly used distributions [6].
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Figure 8:Heatmap of the statistical features for CBank.Here
we randomly pick 2 normal accounts ?5 and ?6 (B?6 = F

0
?6 = 0)

from the Part IV.
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Figure 9: The time series of the residual money of several
suspicious accounts and other normal accounts randomly
sampled from CBank dataset (the parameters for M��LAD
are XD? = X3>F= = n = 10k).

For A��S����, the thresholds computing at Lines 3 � 4, Line 6,
and Line 11 for the upper tails part of distribution will take $ (1),
and it takes $ (VC ) to determine whether each node is abnormal
in Lines 8 � 9. Thus, A��S���� scales linearly with the number of
the seen vertices, $ ( |VC |), at the current time C .

A.5 Normal Behavior Patterns.
To further verify the behavior patterns detected with M��LAD,
we randomly select 2 normal accounts (fall in the part IV of the
features heatmap in Figure 8) from CBank dataset as comparison.

The results are illustrated in Figure 9. In Figure 9(c), we� nd that
the account ?5 has the same behaviors as P1 pattern (i.e., one-time
fan-in and immediate fan-out), but it reaches the balanced state
only three times, which are labeled with red circle marker, and the
total amount of transfers is far less than the suspicious accounts
?3 and ?4 analyzed in the main paper (see Figure 9(a)-9(b)), thus
?5 is more likely to be a normal account. Meanwhile, as shown in
Figure 9(d), there is no obvious pattern in the residual series of the
account ?6 (B?6 = F

0
?6 = 0) and it never reaches a balanced state,

which is consistent with the normal behavior.

In summary, those results suggest that the normal accounts
rarely reach a balanced state compared with the anomaly accounts
whose behavior are more suspected, M��LAD can spot the anom-
alies based on those behavior patterns.

A.6 Detailed Experiment Results.
Here we provide the detailed information about the experimental
settings (baseline parameter settings and injection scheme), qualita-
tive analysis and comparison for the additional results of A��S����
and baselines.

Implementations. In this experiment, we consider 6 outlier
detection algorithms implemented by [45] for comparison:

• Clustering-Based Local Outlier Factor (CBLOF) [12]: We set
the number of clusters : = 8, the coe�cients for deciding
small and large clusters U = 0.9 and V = 5, as recommended
in the original work.

• Histogram-based Outlier Score (HBOS) [10]: We set the num-
ber of bins : = 10.

• Isolation Forest (IF) [18]. We set the number of trees to C = 100
and the sub-sampling size to k = 256, as recommended in
the original work.

• KNN [26]: We set the number of nearest neighbors : = 5.
• Minimum Covariance Determinant (MCD) [11, 31]: We set
the proportion of points to be included in the support of the
raw estimate ⌘ 9 = 0.8, leading to a better accuracy than the
setting in the original work.

• PCA [35]. We use euclidean distance as distance metric and
keep all principal components to calculate the outlier scores.

Injection scheme. We use the clean CFD dataset as the base
for injection after removing all suspicious accounts detected by
M��LAD with the corresponding detection thresholds are b1 = 13,
b2 = 20, f1 = 95 and f2 = 120.

For each part, we inject 20 points as anomalies. Speci�cally, for
the Part I, we vary F

0
⇤ from 100 to 130 and randomly select B⇤ from

1 to the threshold b1 (= 13) and ensure injected anomalies fall in
this desired part. Similarly, for the Part III, we vary B⇤ from 15 to
35 and randomly select F

0
⇤ from 1 to the threshold f1 (= 95). For the

mixture cases, we change the above two experimental features (i.e.,
F
0
⇤ and B⇤) separately and randomly inject 40 points into Part II.

And when one experimental feature changes, such as F
0
⇤ (or B⇤), we

will�x B⇤ (or F
0
⇤) of Part III (or Part I) to the threshold b2 (= 20) (or

f2 (= 120)).
Analysis and Comparison. Based on the above performances,

we analyze each method as follows: HBOS assumes the feature
independence while F

0
⇤ and B⇤ are related; KNN ranks points by

the distance to its : nearest neighbor, however, we assume that
the suspicious accounts usually locate on the upper tail of data so
that close to the normal. Additionally, MCD is proposed based on
Gaussian-distributed data while the distribution of our features
are highly skewed as shown in Fig. 3 in the main paper. In con-
trast, methods without special assumptions perform better. CBLOF
focuses on the physical signi�cance of outliers, PCA utilizes the
correlation between data and IF focus on isolated points, yet they
are designed for general outliers detection purpose and are not fully
suitable for the money laundering detection scenario. However, our
proposed A��S���� can avoid the above problems and achieves
higher accuracy.
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