

EIGENPULSE: DETECTING SURGES IN LARGE STREAMING GRAPH WITH ROW AUGMENTATION

Jiabao Zhang⁺, Shenghua Liu⁺, Wenjian Yu^{*}, Wenjie Feng⁺ and Xueqi Cheng⁺

*Tsinghua University ⁺Institute of Computing Technology ICT, CAS

Graphs are everywhere.

Yahoo answers Yahoo

Twitter

Bipartite graph J #A textl #6, #F 260etl 1 31 2 pm 2 text2 260et1 1 \$1 \$ pm #A, #B, #H #B 3 text\$ 260etl 1 9:15 pm #D #G #C 4 #D

2020/4/20

2

Density usually indicates unusual events

Eswaran, D., Faloutsos, C., Guha, S., Mishra, N. Spotlight: Detecting anomalies in streaming graphs. In: SIGKDD. pp. 1378–1386. ACM (2018)

Adjacency matrix for a graph

Streaming graph

graphs usually expand with time.

time

How do we detect such anomalies in streaming graphs?

How do we even characterize these anomalies?

EigenPulse: detect injection accurately

EigenPulse: "graph heart-beat" 10 ★ Injected Attacks 8 Density **Threshold** 6 4 2 0 Year 2004 2016

EigenPulse: detect anomalous surges on real data

- Microblog: Sina Weibo, Nov. 2013
 - node size: 2.74M x 8.08M, # of edges: 50.06M

EigenPulse: "graph heart-beat"

EigenPulse: run fast and near-linearly

EigenPulse outperforms DenseAlert by more than 2.53x.

run near-linearly in # of edges

Outline

Problem

- Related works
- Our model
- Our algorithm
- Experiments
- Conclusion

Problem

Given:

• a stream of triplets (*user, object, timestamp*).

Find:

- at *each time step*, a group of users and objects who have *densest* edges
- *detect* suspicious surges of density

Related work: DenseAlert

Given: a **stream** of changes, e.g. adding/removing edges in tensor \mathcal{T} .

- Maintain: a subtensor $\mathcal{T}(S)$, where S is set of slice indices.
- to maximize: density $\rho(\mathcal{T}(S))$

$$\rho(\mathcal{T}(S)) = \frac{sum(\mathcal{T}(S))}{|S|}$$

Related work: DenseAlert

- Need an updating operation for *every single adding or removing* edge.
- Running a bit slow.

Shin, K., Hooi, B., Kim, J., Faloutsos, C.: Densealert: Incremental dense-subtensor detection in tensor streams. In: KDD. ACM (2017)

Related work: SpotLight

2020/4

Given a sequence of snapshots of dynamic graphs

- extract a K-dimensional *sketch* v(G) for every snapshot.
- *detect* the anomalous snapshot in sketch space

Eswaran, D., Faloutsos, C., Guha, S., Mishra, N. Spotlight: Detecting anomalies in streaming graphs. In: SIGKDD. pp. 1378–1386. ACM (2018)

Related work: SpotLight

2020/4

- Only spot anomalous snapshots at time windows
- Not detect the exactly suspicious groups (subgraphs)

Eswaran, D., Faloutsos, C., Guha, S., Mishra, N. Spotlight: Detecting anomalies in streaming graphs. In: SIGKDD. pp. 1378–1386. ACM (2018)

Related works: summary of comparisons

	Fraudar	HoloScope D-Cube M-Zoom	DenseAlert	SpotLight	EigenPulse
temporal information		1	1	1	1
streaming graphs			1	1	1
suspicious groups	1	1	1		1
theoretical analysis	1	\checkmark	1	1	1
scalability	1	1	1	1	1

Outline

Problem

- Related works
- Our model
- Our algorithm
- Experiments
- Conclusion

Model: Row-Augmented Matrix

- equivalently, unfolding dynamic tensors (removing empty rows)
- e.g. same restaurant changes overtime, upgrading of a product, etc.

2020/4/20

rows

Model: Row-Augmented Matrix

RAM with sliding window

Crush intro to SVD

(SVD) matrix factorization: finds blocks

Properties of Singular Vectors

- Find dense groups of users by SVD
 - 20 nodes with the highest magnitude projection along the first 9 singular vectors

inducing sub-graphs contain near-cliques.

Prakash, B.A., Sridharan, A., Seshadri, M., Machiraju, S., Faloutsos, C. In PAKDD. 2020/4, Springer (2010)

Outline

Problem

- Related works
- Our model
- Our algorithm
- Experiments
- Conclusion

QB approximation

(1)
$$\Omega = \operatorname{randn}(n, k+s)$$

(2) $Q = \operatorname{orth}(A\Omega)$
(3) $B = Q^T A$
 $A: m \times n, l = k+s$
 $\Omega: n \times l$
 $Q: m \times l$
 $B: l \times n$

$$B = \tilde{U}\tilde{\Sigma}\tilde{V}^{T}.$$

$$A \approx QB = Q\tilde{U}\tilde{\Sigma}\tilde{V}^{T}.$$

$$U = Q\tilde{U}, \Sigma = \tilde{\Sigma}, V = \tilde{V}$$

AugSVD: incrementally building Q

generate matrices Q, B by G, H

6: repeat

7: Read rows **a** for next stride s in augmented A

8:
$$\mathbf{g} = \mathbf{a}\mathbf{\Omega}; \quad \mathbf{h} = \mathbf{a}^T \mathbf{g}$$

9: $glist.enqueue(\mathbf{g}); hlist.enqueue(\mathbf{h})$

- 10: **until** the elements in *glist* corresponds to a window w
- 11: for all g in glist, h in hlist do

12:
$$\mathbf{G} = [\mathbf{G}, \mathbf{g}]; \quad \mathbf{H} = \mathbf{H} + \mathbf{h}$$

13: end for

$$\mathbf{Q} = []; \quad \mathbf{B} = []$$
15: for $i = 1, 2, \dots, t$ do
16: $\Omega_i = \Omega(:, (i-1)b+1:ib); \mathbf{Y}_i = \mathbf{G}(:, (i-1)b+1:ib) - \mathbf{Q}(\mathbf{B}\Omega_i)$
17: $[\mathbf{Q}_i, \mathbf{R}_i] = qr(\mathbf{Y}_i)$
18: $[\mathbf{Q}_i, \widetilde{\mathbf{R}}_i] = qr(\mathbf{Q}_i - \mathbf{Q}(\mathbf{Q}^T\mathbf{Q}_i))$
19: $\mathbf{R}_i = \widetilde{\mathbf{R}}_i \mathbf{R}_i$
20: $\mathbf{B}_i = \mathbf{R}_i^{-T}(\mathbf{H}(:, (i-1)b+1:ib)^T - \mathbf{Y}_i^T\mathbf{Q}\mathbf{B} - \Omega_i^T\mathbf{B}^T\mathbf{B})$
21: $\mathbf{Q} = [\mathbf{Q}, \mathbf{Q}_i]; \quad \mathbf{B} = [\mathbf{B}^T, \mathbf{B}_i^T]^T$
22: end for
2020/4/20
24. \mathbf{V}_i Wenijant: Single-Pass PCA_IICAL pp. 3350-3356 (2017)

 $G: m \times l$

 $H: n \times l$

AugSVD: incrementally building Q

generate matrices Q, B by G, H

6: repeat

7: Read rows **a** for next stride s in augmented A

8:
$$\mathbf{g} = \mathbf{a}\mathbf{\Omega}; \quad \mathbf{h} = \mathbf{a}^T\mathbf{g}$$

9: $glist.enqueue(\mathbf{g}); hlist.enqueue(\mathbf{h})$

- 10: **until** the elements in *glist* corresponds to a window w
- 11: for all g in glist, h in hlist do

12:
$$\mathbf{G} = [\mathbf{G}, \mathbf{g}]; \quad \mathbf{H} = \mathbf{H} + \mathbf{h}$$

13: end for

with Q and B

23:
$$[\widetilde{\mathbf{U}}, \mathbf{S}, \mathbf{V}] = svd(\mathbf{B})$$

24: $\mathbf{U} = \mathbf{Q}\widetilde{\mathbf{U}}$
25: $\mathbf{U} = \mathbf{U}(:, 1:k); \quad \mathbf{V} = \mathbf{V}(:, 1:k); \quad \mathbf{S} = \mathbf{S}(1:k, 1:k)$

G: *m* x *l* H: *n* x *l*

2020/4/20

Yu, Wenjian+: Single-Pass PCA, IJCAI. pp. 3350–3356 (2017).

Combine *Sliding Window*, Change matrices *G*, *H* generation.

Theoretical analysis

Theorem:

• Let approx error rate be $\varepsilon_i = (\sigma_i - \hat{\sigma}_i)/\sigma_i$, then

• Error is small when σ is *highly skewed*

EigenPulse

- At every time stride,
 - Choose dense blocks based on the first several singular vectors.

EigenPulse

- At every time stride,
 - Choose dense blocks based on the first several singular vectors.
 - [Optional] dense block detection in small selected blocks
 ✓ use Fraudar and HoloScope (HS-α)
 - Calculate density

$$D_t(rowset, colset) = \frac{\sum_{i \in rowset} \sum_{j \in colset} \mathbf{A}_t(i, j)}{|rowset| + |colset|}$$

plotting EigenPulse, and detecting anomalies.

Outline

Problem

- Related works
- Our model
- Our algorithm
- Experiments
- Conclusion

Data statistics

Table	1.	Datasets	Statistic	Information
-------	----	----------	-----------	-------------

Name	nodes	edges	span time
BeerAdvocate	$26.5\mathrm{K}\times50.8\mathrm{K}$	1.08M	Jan 08 - Nov 11
Yelp	$686\mathrm{K} \times 85.3\mathrm{K}$	$2.68\mathrm{M}$	Oct 04 - Jul 16
Amazon Phone & Acc	$2.26\mathrm{M}$ $ imes$ $329\mathrm{K}$	$3.45\mathrm{M}$	Jan 07 - Jul 14
Amazon Electronics	$4.20M \times 476K$	$7.82 \mathrm{M}$	Dec 98 - Jul 14
Amazon Grocery	$763K \times 165K$	$1.29\mathrm{M}$	Jan 07 - Jul 14
Sina Weibo	$2.74\mathrm{M}{ imes}8.08\mathrm{M}$	$50.06 \mathrm{M}$	Sep 01 - Dec 01

EigenPluse: detect injection accurately and instantly

Injected 10 dense blocks for Yelp dataset

threshold = 99.7 percentile

EigenPluse: run faster than state-of-art methods

EigenPulse achieves more than $2.53 \times$ speed up.

EigenPluse: detect anomalous surges on Microblog data

set w = 2h and s = 1h on Sina Weibo data

Detected Blocks in Sina Weibo

Message Topic	Size	Time range	#Edges	
China Telecom Promotion Activity	39×57	$6:00 \sim 8:00, \text{ Nov } 7$	2,004	_
	78×58	$7:00 \sim 9:00$, Nov 7	4,051	
	151×119	$8:00 \sim 10:00$, Nov 7	8,295	
11.11 Shopping Festival ads	201×139	6:00~8:00, Nov 10	7,012	_
	196×111	$7:00 \sim 9:00$, Nov 10	$9,\!668$	$\approx 100 \ rt/user$
	126×93	$8:00 \sim 10:00$, Nov 13	638	_
A pop. singer's				_
(Lixin Wang)	7 imes 8	$22:00 \sim 24:00$, Nov 26	953	\approx 140 <i>r</i> t/user
music album ads.				_
Thanksgiving sale ads	26×36	23:00, Nov 26 \sim 1:00, Nov 27	629	
	43×34	$1:00\sim3:00$, Nov 27	263	

7 users × 8 messages, 953 edges in 2 hours means

every user retweeted more than once per minute.

EigenPulse: Run linear with # of edges

Conclusion

- Detect dense blocks given a streaming graph in form of triplet (*user, object, timestamp*)
- Robust and effective
 - theoretical robust approximation to batch SVD.

Questions and Answers

THANK YOU!