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a b s t r a c t

Given a graph with millions of nodes, what patterns exist in the distributions of node characteristics?
How can we detect them and separate anomalous nodes in a way similar to human visual perception?
More generally, how can we identify micro-clusters in a histogram and spot some interesting patterns?

In this paper, we propose a vision-guided algorithm, EagleMine, to recognize and summarize node
groups in a histogram constructed from some correlated features. EagleMine hierarchically discovers
node groups, which form internally connected dense areas in the histogram, by utilizing a water-
level tree with multiple resolutions according to the rule of the visual recognition. EagleMine uses
the statistical hypothesis test to determine the optimal groups while exploring the tree and simul-
taneously performs vocabulary-based summarization. Moreover, EagleMine can identify anomalous
micro-clusters, consisting of nodes that exhibit very similar and suspicious behavior, deviate away from
the majority. Experiments on the real-world datasets show that our method can recognize intuitive
node groups as human vision does; it achieves the best summarization performance compared to
baselines. In terms of anomaly detection, EagleMine also outperforms the state-of-the-art graph-based
methods with significantly improving accuracy in a micro-blog dataset. Moreover, EagleMine can be
used for other applications, e.g., to detect the synchronized patterns in the temporal retweet event.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Given real-world graphs with millions of nodes and edges,
he most intuitive way to explore the graphs is to construct a
orrelation plot [1] based on the features of graph nodes. Usually,
heatmap of those scatter points, which is a two-dimensional
istogram, is used to depict their density of aggregation [2]. In
histogram, people can visually recognize nodes gathering into
eparate dense areas as groups (see Fig. 1), which help to explore
ome interesting patterns (like communities, co-author associ-
tion behaviors) and spot anomalies (e.g., fraudsters, attackers,
ake-reviewers, outliers) in an interpretable way [3,4].
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In particular, graphs can represent various relations, such as
friendships on Facebook, ratings from users to items on Ama-
zon, or retweets from users to messages on Twitter, even they
are time evolving. So, a snapshot of such graphs has numer-
ous correlated features, e.g., degree, #triangle, and PageRank,
the combination of which will generate many correlation plots.
However, it becomes labor-intensive to manually monitor and
recognize patterns from the histogram of the snapshots for tem-
poral graphs. Moreover, if extended to more features, the visual-
ization and pattern-recognition become difficult for the resultant
multi-dimensional histogram. This raises the following question.

Question 1. Given a histogram of the correlation plot of graph nodes
in some feature spaces, how can we design an effective algorithm to
automatically

• recognize the node groups as human vision does?
• summarize the point distribution in the feature spaces?
• identify some suspicious micro-clusters?
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Fig. 1. Histogram of correlation plots for graph node in different applications. (a) Out-degree vs. Hubness for users in retweets relation of Sina Weibo. (b) # Triangle
vs. Degree of user in friendship of Tagged [5]. (color figure online).
‘Micro-cluster’ refers to a relatively small group of nodes that
xhibit very similar behavior in the feature spaces, thus, they ac-
ually form the collective anomalies [6], e.g., a group of fraudsters
ollude to artificially boost the reputation of mediocre services
nd products. Here we demonstrate some of the possible feature
paces, namely

i out-degree vs. hubness – Fig. 1a – this can be used to
spot nodes with high out-degree but low hubness scores
(i.e. fraudsters, which have many outgoing edges to these
unimportant nodes, probably, customers that paid them) [7].

ii # triangle vs. degree – Fig. 1b – catching a near-clique group
(too many triangles, for their low degree), as well as star-like
constellations (too few triangles for such high degree) [8].

In this paper, we propose EagleMine, a novel tree-based min-
ng approach to recognize and summarize the node groups in
heatmap for correlation plot of items (like graph node and
ehavior). EagleMine can also identify anomalous micro-clusters.
xperiments show that EagleMine outperforms baselines and
chieves better performance both in quantitative (i.e. the total
ncoded length for a compact model description) and qualitative
i.e. the consistency with vision-based judgment) comparisons.
agleMine detects a micro-cluster of hundreds of bots in a real-
orld micro-blog data, Sina Weibo,1 which present strong signs

of sharing unusual login-name prefixes, e.g., ‘best*’, ‘black*’ and
‘18-year-old*’, and exhibit very similar behavior in the feature
spaces (see Fig. 2b). It also can be used to detect micro-clusters
in other applications beyond the graph and find some interesting
patterns (see Section 5.6).

The main strengths of EagleMine are as follows:

• Automated summarization: EagleMine automatically
summarizes the histogram derived from the correlated
features and recognizes node groups forming disjoint dense
areas as human vision does (see Figs. 2a and 2i).
• Effectiveness: EagleMine detects interpretable node groups

and outperforms other baselines (clustering methods) and
even those with manually tuned parameters in qualitative
(see Figs. 2d–2i) and quantitative experiments (see Fig. 8).
• Anomaly detection: EagleMine can spot some explain-

able anomalies concerning suspicious node groups (see
Fig. 2b) in real large graphs. Compared with the graph-
based anomaly detection methods, EagleMine achieves
higher accuracy for finding suspicious users in Sina Weibo
data. EagleMine also detects micro-clusters for spotting
suspicious objects in other applications beyond the graph,
like temporal behavior analysis (see Fig. 9).

1 One of the largest micro-blog websites in China.
• Scalability: EagleMine is scalable, with nearly linear time
in the total value of histogram, which equal to the num-
ber of nodes for the graph case, and can deal with more
correlated features in multi-dimensional spaces.

Reproducibility: Our code is open-sourced at , and most of the
datasets we used are publicly available online.

The rest of the paper is organized as follows. Section 2 surveys
the related work. Section 3 gives the notions and our proposed
model and Section 4 introduces the details of the EagleMine
algorithm for recognizing and summarizing graph node groups.
Experiments are given in Section 5. Finally, Section 6 concludes
the paper.

2. Related work

In this section, we review previous related work from three as-
pects, including the clustering method, vision-based data mining,
and anomaly detection.

2.1. Clustering methods

For the Gaussian clusters, K-means, X-means [9], G-means
[10], and BIRCH [11] (which is suitable for spherical clusters) suf-
fer from being sensitive to outliers. Those methods are distance-
based and prefer to cluster the points within a short distance
in feature space forming a spherical area. Density-based meth-
ods, such as DBSCAN [12] and OPTICS [13], are noise-resistant
and can detect clusters of arbitrary shape and data distribution,
while the clustering performance relies on the density thresh-
old for DBSCAN, and also for OPTICS to derive clusters from
reachability-plot. RIC [14] enhances other clustering algorithms
as a framework, using minimum description language as the
goodness criterion to select fitting distributions and separate
noise. STING [15] hierarchically merges every four grids in lower
layers to find clusters with a given density threshold. Density-
Peaks [16] defines the cluster center as the point with high local
density and away from other centers, it selects the cluster centers
based on the decision graph then puts remaining points into the
nearest cluster, while it needs to compute the pairwise distance of
points which is not suited to large-scale data and needs to man-
fully determine the number of cluster centers as well. Clustering
algorithms [17] derived from the watershed transformation [18]
treat the pixel regions between watersheds as one cluster, they
only focus on the final results and ignore the hierarchical struc-
ture of clusters. [19] compared different clustering algorithms and
proposed a hierarchical clustering method, ‘‘HDBSCAN’’, while its
complexity is prohibitive for very large datasets (like graphs) and

the ‘‘outlierness’’ score does not line with our expectations. In
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Fig. 2. Our proposed EagleMine achieves effective results on micro-blog Sina Weibo data. (a) EagleMine summarizes the graph nodes in a feature space of Fig. 1a with
runcated Gaussian distributions. The ellipses illustrate 1.5 ·Σ and 3 ·Σ contours of Gaussians, where Σ is the covariance matrix. (b) highlights some micro-clusters,
ncluding a disconnected small network and very suspicious micro-clusters. A user name list on the right side shows the name patterns of bots in a micro-cluster,
here 182x: ‘‘best*’’ means 182 bots share prefix ‘‘best’’. (c) EagleMine achieves the best AUC \ ROC (Area Under the Receiver Operating Characteristic Curve) for
etecting suspicious users and messages on Sina Weibo compared to the state-of-the-art competitors. (d)–(h) are comparison result of baselines and EagleMine for
ecognizing the node groups. EagleMine outperforms others by visual comparison. Watershed (with threshold THOLD. for image background), DBSCAN, and STING are
anually tuned to have relatively better results. The blue scatter points in (f)–(h) denote individual outlier nodes. Even though DBSCAN and STING are extensively

uned, some micro-clusters of low density are missed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
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ddition, community detection algorithms [20,21], modularity-
riven clustering, and cut-based methods usually cannot handle
arge graphs with million nodes or fail to provide an intuitive or
nterpretable result when applying to graph clustering.

.2. Vision-based data mining

Supported by human vision recognition theory, including vi-
ual saliency, color sensitivity, depth perception, and attention
f vision system [22], visualization techniques [23] and HCI tools
elp to get insight into data [24,25]. Scagnostic [3,26] diagnoses
nomalies from the plots of scattered points. Net-Ray [4] visu-
lizes and mines adjacency matrices and scatter plots of a large
raph, and discovers some interesting patterns. [27] constructs
ocus-plots (pairwise feature plots) from a few feature subspaces
nd proposes LookOut for to give pictorial explanations of out-
ying multi-dimensional behavior. GraphVis [25,28] introduce
flexible web-based network visual analytics platform which

ombines interactive visualizations with analytic techniques to
evealing important patterns and decision-making etc.

.3. Anomaly detection

As for anomaly detection, [6] gives a comprehensive sur-
ey about the different categories of anomalies, its applications,
nd research areas, there also have been diverse approaches for
nomaly detection in graphs (see [29] for a survey); the collec-
ive anomaly has also been explored in different applications,
.g., mobile service [30], social network [31,32] and network
raffic [33], etc. Recently, [34,35] find communities and suspicious
lusters in a graph with spectral-subspace plots. SpokEn [34]
onsiders the ‘‘EigenSpokes’’ pattern of community in the EE-
lots produced by pairs of eigenvectors of a graph, which is
pplied to fraud detection. GetScoop [35] can find the dense
ubgraph in a bipartite graph with local search; VoG [36] used
ome predefined structures as vocabulary to summary the large
raph and TimeCrunch [37] extend it by incorporating time
ignatures for the dynamic graph. As more recent works, dense
lock detection has been proposed to identify anomalous pat-
erns and suspicious behaviors [38–41]. A representative work,
raudar [40], proposed a densest subgraph detection method
hat incorporates the suspiciousness score of nodes and edges
uring optimization. CatchCore [41] detected hierarchical dense
ubtensors to catch the anomaly patterns for the multi-aspects
ata in a multi-resolution matter.
Besides, graph mining techniques have wide applications, in-

luding structure pattern detection [42], node classification [43,
4], anomaly detection [45,46], and more. With the development
f deep learning [47] and graph neural network [48], they provide
seful tools for many graph-mining problems based on their
owerful representation ability and can also applied to different
ields, e.g., time series analysis [49], image classification [50],



W. Feng, S. Liu, C. Faloutsos et al. / Future Generation Computer Systems 115 (2021) 236–250 239

a
E

3

e
i
r

n
e
c
s
u
s
i
a

f
t
g
e
h
f

n
b
o
a
a
g
h

a
d
b

r
s
t
o
s

s

4

t

T
n
a

d
d
s

T
t ,
s
r
v

g
d
t
v

G
t
w
r
d
p
o
a
e

Table 1
Comparison of EagleMine and relevant methods. ✓ denotes ‘supported’.
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Parameter free ✓ ✓ ✓ !

Non-spherical cluster ✓ ✓ ✓ ✓ !

Anomaly detection ✓ ✓ ✓ ✓ ✓ !

Summarization ✓ !

Linear in #nodes ✓ ✓ !

and knowledge graph [51], while limited to some supervised or
semi-supervised tasks.

A comparison between EagleMine and the majority of the
bove methods is summarized in Table 1. Our proposed method
agleMine is the only one that matches all specifications.

. Model

Consider a graph G with node set V and edge set E , it can be
ither homogeneous (monopartite), such as friendship or follow-
ng relations in the social network, or bipartite for users rating
estaurants.

Which ones should be extracted to characterize the graph
odes from the possibly infinite set of features? Intuitively, we
xpect to select these features that (a) are fast-to-compute; (b)
an describe some patterns or laws that most nodes obey, except
ome anomalous nodes, in a large graph. Thus, the potentially
seful features include (in-, out-) degree, # triangle, coreness,
pectral vectors, and PageRank, which inherently measure the
mportance of nodes in a graph; some time-related features can
lso be used in other scenarios.
As stated in the introduction, given a histogram constructed

rom some feature spaces, our goal is to recognize node groups
hat are consistent with human vision does and optimize the
oodness-of-fit (GoF) of a model for the node distribution in
ach group. So, we map those items (e.g., graph nodes) into a
istogram that may be multi-dimensional consisting of multiple
eatures.

As the two-dimensional histogram shows (see Fig. 1), one can
aturally expect that the adjacent bins with similar color should
e in one group by the intuitive visual recognition. From the view
f clustering, the node group with high density forms a cluster
nd there are distinctions between different clusters, i.e., they
re separated by different low-density regions. Also, these node
roups defined by different density thresholds have a nest or
ierarchical structure as shown in the areas with different colors.
Consider the histogram (heatmap) H, its dimension is denoted

s F and the number of non-empty bins is nnz(H). We use b to
enote any bin in H and h to denote the number of nodes in a
in.
Model: To summarize the histogram H more succinctly cor-

esponding to a feature space of graph nodes, we utilize some
tatistical distributions as the vocabulary with some characteris-
ic parameters to describe the density and randomness properties
f nodes within its group of H. Therefore, our vocabulary-based
ummarization model of graph nodes consists of

• Configurable vocabulary: statistical distributions Y for de-
scribing node groups of H in a feature space.
• Assignment variables: S = {s1, . . . , sC } for the distribution

assignment of C node groups (clusters).
Algorithm 1 EagleMine

Input: Histogram H of a specific feature space.
1: Build a hierarchical tree T for node groups in H with

WaterLevelTree algorithm. ▷ see Section 4.1
2: Explore T and search the optimal summarization for the H

with TreeExplore algorithm. ▷ see Section 4.3

• Model parameters: Θ = {θ1, . . . , θC } for distributions in
each node group. E.g., the mean and variance for normal
distribution.
• Outliers: unassigned bins O in H for some outliers.

In terms of the configurable vocabulary Y , it can include
any suitable or application-depended distribution, such as the
Uniform, Gaussian, Laplace, and Exponential distributions or oth-
ers that can be tailored to the data and characteristics to be
described.

Moreover, based on the characteristic of node distribution in
feature space, we mainly focus on some collective anomaly pat-
terns [6], that is, a collection of data instance as a whole deviates
significantly from the entire dataset. Follow the assumption that
most of the items belong to normal data and form a large and
dense cluster, while anomalies either belong to small or sparse
clusters and they are corresponding to some micro-clusters in a
histogram; thus, we measure their anomaly with a formulated
suspicious score according to the degree of deviation to the
normal.

It should be noticed that the dimension of the histogram
should not be very large due to the limitation of the sparsity of
node connection and the complexity of geometric properties of
distributions in the high dimensional space [52,53]. So, F ≤ 5 is
uggested.

. Proposed method

Our proposed method, EagleMine, is guided by the following
raits and mechanism of human vision and cognitive system:

rait 1. Human vision usually detects some connected compo-
ents, which can be rapidly recognized by eyes despite substantial
ppearance variation [54,55].
This motivates us to identify each node group as an internally

ense connected area in a histogram where different ones are
isjoint from each other; it also guides the refinement steps for
moothing.

rait 2. Top-to-bottom recognition and hierarchical segmenta-
ion [56] characteristics. Humans organize basic elements (e.g., words
hapes, visual-areas) into higher-order groupings to generate and
epresent complex hierarchical structures in human cognition and
isual–spatial domains.
This suggests that organizing and exploring connected node

roups should be based on a hierarchical structure, as we will
o. Also, the recent work [57] uses the neural network model
o study the human visual importance perception and aid data
isualization and graphical design.
The overall structure of EagleMine is described in Algorithm 1.

iven a histogram H, EagleMine first builds a hierarchical tree T
o organize these micro-clusters (node groups) identified from H
ith WaterLevelTree, the tree T provides an efficient and multi-
esolution tool to identify and separate clusters (node group) at
ifferent density levels; then it uses TreeExplore algorithm to ex-
lore and search the optimal summarization forH, which consists
f the model parameters Θ , assignment S for each node group,
nd outliers index O. The following subsections will elaborate on
ach step in detail.
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Algorithm 2 WaterLevelTree Algorithm

Input: Histogram H.
Output: Water-Level tree T .
1: T = {positive bins in H as root}.

// Raw tree construction.
2: for r = 0 to log hmax by step ρ do
3: Hr

: assign h ∈ H to zero if log h < r .
4: Hr

= Hr
◦ E. ▷ binary opening to smooth.

5: islands Ar
= {jointed bin areas in Hr

}.
6: link islands in Ar to its parent at level rprev in T .
7: end for

// Tree refinement steps.
8: Contract T : iteratively remove each single-child island and

link its children to its parent.
9: Prune T : heuristically remove noise nodes.

10: Expand islands in T .
11: return T

4.1. Water level tree

In the histogram H, we imagine an area consisting of con-
ected positive bins (h > 0) as an island, and the other bins

as the water area. Assume that we can flood those island areas,
making the bins with h < r to be underwater, i.e. setting hs to
e 0, where r refers to some specific water level. Afterward, the
emaining positive bins can form new islands in the condition of
ater level r .
To organize all those islands identified in different water lev-

ls, we propose a water-level tree structure T , in which each node
epresents an island and the edge represents the relation that a
hild island at a higher water-level comes from a parent island at
lower water-level. Note that increasing r from 0 corresponds to

raising the water level and flooding from the root to leaves in T .
In a 2D histogram, the islands are candidate node groups

for Trait 1; the flooding process intuitively reflects how human
eyes hierarchically capture those different objects from the color
histogram H as Trait 2. For example, the gradient color in Fig. 1
depicts groups at different water levels.

This motivates us to identify each node group as an internally
connected dense area in a histogram where different ones are
disjoint from each other and design refinement for smoothing.
The WaterLevelTree algorithm is shown in Alg. 2. It starts from
the root and raises the water level r in logarithmic scale from
0 to log hmax (hmax = maxH) with a step size ρ,2 to account
for the power-law-like distribution of h. Here, we use the binary
opening operator (◦)3 [58] to smooth each island, which can
remove some small isolated bins (treated as noise), and separate
weakly-connected islands with a specific structure element (Line
4). Afterward, we link each island at the current level to its parent
at the lower water level rprev in the tree (see Fig. 3a) (Line 6).
Finally, when r reaches the maximum level log hmax, the flooding
process stops.

We propose the following steps to refine the raw tree T :
Contract: The current tree T may contain many nodes with

only one child, meaning that no new islands are separated, which

2 For raising water levels, it can also use some local search method to
etermine the optimal step size ρ∗ for each step except for the fixed ρ, that is,
ρ∗ can separate just right the parent node in the tree T into at least two child
nodes.
3 Binary opening is a basic workhorse of morphological noise removal in

computer vision and image processing. Here we use 2× · · · × 2  
F

square-shape

‘‘probe’’.
 b
Fig. 3. Refinement steps in the WaterLevelTree Algorithm. (a), (b) correspond
to contract, prune, and expand for the water-level tree respectively. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

are redundant. Hence, we search the tree using the depth-first
search (DFS); we will remove it and link its children to its parent
once anyone single-child node is found.

This process is shown in Fig. 3a, the dashed blue lines with
arrow depict that the children of the single-child nodes are linked
to its parent, and the gray thin links will be removed.

Prune: The purpose of pruning is to smooth away these noise
eaks at the top of some nodes in T , attributing to the fluc-
uations of h among neighbor bins. Hence, we prune such child
ranches (including their descendants) based on a heuristic rule by
heir total area size: the sum of h in bins of children is no more than
5% that in the parent.
The pruning branches are illustrated in Fig. 3b ( 1⃝ and 2⃝).

aking 2⃝ as an example, the island α at the water-level r con-
ains some fluctuation noises on its top, and these noises will
eparate into 3 ‘tiny’ islands and link to their parent α in T when
he water-level rises to r ′. So, they will be removed with pruning.

Expand: We include some surrounding bins of an island (tree
ode) to avoid over-fitting for learning the distribution param-
ters and eliminate the possible effect of the uniform step ρ in
he logarithmic scale. So, we iteratively extend these positive bins
round islands by a one-bin step size each time until some touches
ith other islands or two times the number of bins as contained in
he original.

The island-expansion of T is illustrated by the circles with
hadow in Fig. 3b. For the node 3⃝, the irregularly-shaped blue
art depicts the original island and the outer around gray squares
re expanded part at the first step; further expansion follows a
imilar process until it satisfies the above afore-stated constraint.
Comparably in the Watershed formalization [18], the fore-

round of H are defined as catchment basins for clustering pur-
oses and can capture the boundaries between clusters as seg-
entation. We will see in experiments (Section 5.2 and Fig. 2), the
egmentation in Watershed approximates the islands in one level
f T , with a threshold parameter defined for the background.
hus, it cannot perfectly separate some islands at different levels
nd cannot handle multi-dimensional data. Another grid-based
lustering algorithm STING [15] builds a multi-resolution tree for
he histogram bins as an index for quick querying. Clusters are
irectly achieved by querying the tree-like index with the density
hreshold as a parameter, while those clusters are the islands at
he same level of the water-level tree. Besides, there is no prior
nowledge to set the optimal parameters in our scenario; it is also
rue for DBSCAN even if they are related. Also, other Gaussian-

ased methods, e.g., G-means and BIRCH, carry out clustering
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with making an explicit assumption about the distribution of
data; so they cannot be applied to situations with some complex
data distribution, and the results are usually not as good as
some density-based methods. However, EagleMine hierarchically
identifies clusters at different density levels with no assumption
for data distribution, it has no tuning parameters, and it searches
the water-level tree to find the best combination of islands, which
may come from different levels (see Section 4.3).

4.2. The vocabulary describing the islands

Vocabulary Y can contain any proper user-defined distribu-
tions. For the concerned feature spaces, we use the multivariate
Gaussian as one of the vocabulary terms. Noticed that many
features of graph nodes, such as degrees and # triangle, typically
follow from the power-law. Hence those bins along the histogram
boundary have a larger number of nodes (as the bottom in Fig. 1);
thus, the truncated Gaussian distribution [59] is a proper choice
for describing such truncated ellipses. Moreover, the bins in H are
some discrete units, so the distribution terms must be discretized
and it defines the probability function in each bin instead of the
probability density function. Therefore, we define the discretized,
truncated, multivariate Gaussian distribution (DTM Gaussian for
short) as follows:

Definition 1 (DTM Gaussian). The probability function in a bin b
(as denote the boundary of the bin) is

P(b;µ,Σ,β) =
∫
· · ·

∫
β

ψ(x;µ,Σ,β)dx

where x is an F-dimension variable, β ∈ RF×2 is the truncation
bounds (lower and upper bounds for each dimension) and ψ(·) is
the density function of a truncated normal distribution with the
mean µ and co-variance Σ.

For the 2D histogram, β = [[0,+∞]; [0,+∞]], the DTM
aussian is a flexible model for capturing the clusters with dif-
erent shapes, like line, circle, and ellipse, and truncation. The
ed–yellow oval circles in Fig. 2a depict some node clusters of
TM Gaussian described with 1.5·Σ and 3·Σ .
Observing the multi-mode distribution of islands (a skewed

riangle-like island in Fig. 1a), we also add the mixture DTM
aussian as the other vocabulary term. In our data study, this
riangle-like island exists in many different histogram plots and
ontains the majority of graph nodes. For example, Fig. 1a depicts
sers’ distribution over out-degree and hubness. The power-law
f out-degree makes the density decrease along the vertical axis.
eanwhile, the users with similar degrees share similar hubness,

orming a nearly normal distribution in horizontal. Therefore,
hose majority users form a triangle-like island in the feature
pace, and we use the mixture DTM Gaussian for it.
In general, to decide the assignment S of vocabulary to each

sland, we can use the distribution-free statistical hypothesis test,
ike Pearson’s χ2 test or other distribution specified approaches.

After getting the vocabulary assignment, we use maximum
ikelihood estimation method to learn the parameters θα for an is-
and α, where θα = {µα,Σα, Ñα} and Ñα =

∑
(i1,...,iF )∈α

log hi1,...,iF .
or denotation, we also define the function DistributionFit(α, sα)
s the learning process which returns θα .

.3. Tree explore algorithm

With the hierarchical water-level tree T and the describing
ocabulary Y , we can then determine the optimal node groups
nd their summarization. The procedure is shown in Alg. 3, we
irst decide the distribution vocabulary term s for each island
α
Algorithm 3 TreeExplore Algorithm

Input: WaterLevelTree T
Output: summarization {S,Θ,O}.
1: Θ = ∅.
2: S = decide the distribution type sα from vocabulary Y for

each island in T .
3: Queue Q = root node of T .
4: while Q ̸= ∅ do ▷ breadth-first search.
5: α← dequeue of Q .
6: θα = DistributionFit(α, sα) ▷ determine param.
7: Hypothesis test H0 = bins of island α come from

distribution sα .
8: if H0 is rejected then
9: enqueue all the children of α into Q .

10: S = S \ {sα}
1: else
2: Θ = Θ + {θα}

13: end if
14: end while
15: Stitch and replace the promising distributions in S , then

update Θ .
16: Decide outliers O deviating from the recognized groups.
17: return summarization {S,Θ,O}.

(tree node) α, search the tree with BFS, and select the optimal
islands with some criteria; refine the results with stitching in
final.

To determine the assignment of the distribution term, we
heuristically assign the mixture DTM Gaussian to the island con-
taining the largest number of graph nodes at each tree level, and
the DTM Gaussian to other islands for simplicity.

BFS search and Selection criteria: Afterward, we search along
the tree T with BFS to select the optimal combination of node
groups (see steps 4 to 14). Starting from the root, we can deter-
mine whether to explore the children of a node according to some
criteria.

In statistics and machine learning, AIC and BIC are criteria
used for model selection among a finite set of models in the
regularization framework; the model with the lowest score is
preferred [60]. Thus we can use those criteria to determine the
target island: if the score of a parent node is less than the sum
of scores of its children, will we stop searching and select this
parent island, otherwise, we will continue to search.

Another criterion — the statistical hypothesis tests select mod-
els by measuring the statistically significant of idealized null
hypothesis [10,61], such as the distribution-free tests Pearson’s
χ2 test and K–S test, Anderson–Darling test for Gaussian distri-
bution, and also others. The null hypothesis for searching the
children of the island α in T is:

H0: the bins of island α come from distribution sα .

If H0 is not rejected, we stop searching for the children of the
island α; otherwise, we further explore its children.

We utilize the Anderson–Darling statistic test, compared with
Pearson’s χ2 test, AIC, and BIC criteria being unstable due to
the extreme variability of the value in histogram bins. Thus, we
test an island based on its binary image by focusing on whether
the island’s shape looks like a truncated Gaussian or mixture.
We simplify the hypothesis test by projecting the data of bins
into some dimensions and apply the hypothesis test according
to projection pursuit [62] and G-means [10]. We implement the
Quadratic class ‘upper tail’ Anderson–Darling Statistic test4 [63]

4 It measures the GoF of the left-truncated Gaussian distribution.
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Fig. 4. The optimal island candidates search and the stitching post-process in
reeExplore Algorithm. The dashed lines with an arrow along with the edges
f the tree denote BFS search, the dashed circles denote the final optimal
andidates of node groups selected by the statistical hypothesis test.

with the 1% significant level) due to the truncation. And we
ccept the null hypothesis H0 only when the test is true for all

dimension projections; will H0 be rejected once one of them is
rejected. Finally, we get the node group candidates to summarize
the histogram when the BFS stops. The dashed lines with an
arrow in Fig. 4 demonstrate the search trace and the shaded
circles are the final optimal candidates of islands.

Stitch: Furthermore, some islands from different parents, e.g.,
α1 and α2 in Fig. 4, are physically close to each other. In such a
case, those islands can probably come from the same distribution.
Therefore, we use the stitching process in step 15 to merge them
by the hypothesis test as well. The stitching process stops until
no changes occur. When there are many pairs of islands can
be merged at the same time, we choose the one with the least
average log-likelihood reduction after stitching:

(αi∗ , αj∗ ) = argmin
i,j

Li + Lj − Lij

#points of αi and αj
(1)

where αi and αj are the pair of islands to be merged, L(·) is log-
likelihood of a island, and Lij is the log-likelihood of the merged
island.

Outliers and Suspiciousness score: The outlier comprises of
those bins far away from any distribution of the identified node
groups (i.e., with the probability less than δ = 10−4).

Besides, the major island containing the most nodes is normal
based on the implicit assumption that the normal instances are
far more frequent than anomalies in data for the unsupervised
mode [6]. So, we define the weighted KL-divergence of an island
to the major one as its suspiciousness score:

Definition 2 (Suspiciousness). Given the parameter θm for the
major island, the suspiciousness of the island αi is described by a
distribution with the parameter θi is:

κ(θi) = log d̄i ·
∑
b∈αi

Ni · KL ( P(b | θi) ∥ P(b | θm) ) (2)

where P(b | θ ) is the probability of bin b for a distribution with
θ as the parameter, Ni is the number of nodes in the island i, and
we use the logarithmic d̄i, the average degree of all the graph
nodes in i, as a weight, based on the domain knowledge that
higher-degree nodes are more suspicious if all else being equal.5

5 In general cases, we can use the sum of the average deviation of
ach feature with normalization to be the weight as a contribution to the
uspiciousness.
 l
Table 2
Summary of the real world dataset.

# of nodes # of edges Content/Relation

Amazon (2.14M, 1.23M) 5.84M Rate
Android (1.32M, 61.27K) 2.64M Rate
BeerAdvocate (33.37K, 65.91K) 1.57M Rate
Yelp (686K, 85.54K) 2.68M Rate
Flickr (2.30M, 2.30M) 33.14M User to group
Tagged (2.73M, 4.65M) 150.8M Anonymized links
Youtube (3.22M, 3.22M) 9.37M Who-follow-who
Sina Weibo (2.75M, 8.08M) 50.1M User-retweet-msg

4.4. Time complexity

Given the features associated with nodes V , the time complex-
ity for generating histogram H is O(|V|).

Let C be the number of clusters, assume that T is the number
of iterations for learning the parameters in DistributionFit(·) by
gradient-descent of Alg. 3, it is related to the differences between
initial and optimal objective values. With hmax = maxH as
defined before, then we have:

Theorem 1 (Time Complexity). The time complexity of EagleMine
is

O(
log hmax

ρ
· nnz(H)+ C · T · nnz(H)). (3)

Proof. In EagleMine, to build T , WaterLevelTree compares all
nnz(H) non-empty bins with water level r in Line 3, and then
do binary opening; to remove small blobs (noise) by checking
non-empty ones in Line 4, both of which cost O(nnz(H)). From
ine 5 to 6, for each island, we connect its children (# of islands
nnz(H)) to it, so the time cost equals to the number of links,

.e. O(nnz(H)). Hence the whole iteration from Line 2 to 7 takes
(τ ·nnz(H)), where τ = log hmax/ρ . As a result, we get a tree T ,
hose height is τ and width is at most nnz(H). The total num-
er of links in that tree are less than τ ·nnz(H)). Afterward, the
peration of contracting takes O(τ ·nnz(H)). In each tree level, the
ummation of bins in islands is less than nnz(H), so the complex-
ty of both pruning and expanding process is also O(τ ·nnz(H)).
onsequently, the costs of constructing the water-level tree T is
(τ ·nnz(H)).
During the search of the optimal node groups in the TreeEx-

lore algorithm, the cost of DistributionFit(·) is O(T ·nnz(H)). Since
ur algorithm finds C micro-clusters when stops, the subtree
ith visited nodes by BFS search on T has C leaves. Due to the
ontraction of WaterLevelTree at Line 8, each non-leaf node in
he subtree has at least two children, hence the subtree has at
ost 2 · C nodes, which means the steps from Line 4 to 14 have
t most 2 · C times of choosing the largest island, conducting
istributionFit(·), and applying hypothesis tests. The cost of the
tatistical hypothesis test on each node (island) is linear to the
umber of bins in the island, which is less than nnz(H). During
titching, we only test those islands close to each other in a plane,
hich costs less than the above process on tree T .
Therefore, the time complexity of EagleMine is

O(τ · nnz(H)+ 2C · (T · nnz(H)+ nnz(H)))

= O(
log hmax

ρ
· nnz(H)+ C · T · nnz(H))

here C ≪ nnz(H). ■

. Experiments

We designed and conducted experiments to answer the fol-
owing questions:
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• Q1. Qualitative interpretation (vision-based): Does Ea-
gleMine accurately identify micro-clusters that agree with
human vision recognition?
• Q2. Quantitative evaluation: Does EagleMine give a signif-

icant improvement in concisely summarizing the graph?
• Q3. Anomaly detection accuracy: How does EagleMine’s

performance on anomaly detection in real-world graphs,
compared with the state-of-the-art methods? How much
improvement does the visual-inspired information bring?
• Q4. Generalization: Does EagleMine can be generalized to

mine interesting patterns beyond the graph data?
• Q5. Scalability: Is EagleMine scalable with regard to the data

size? Dose EagleMine scale out?

.1. Experiment settings

.1.1. Datasets
The dataset information used in our experiments is sum-

arized in Table 2. The Amazon [64], Android [65], BeerAdvo-
ate [66], and Yelp [67] datasets are about user-rate-item rela-
ions, where the item are products, Apps, beers, and food respec-
ively. The Flickr [68] data is about the user belong to group rela-
ions. The Youtube [69] forms a homogeneous graph representing
he following relation between users. The Tagged [5] dataset was
ollected from Tagged.com, a social network website; among the
even anonymized types of links between users, we chose the
ype-6 with the most number of edge and constructed a homoge-
eous graph. The micro-blog Sina Weibo dataset was crawled in
ov. 2013 from weibo.com, consisting of a user-retweet-message
bipartite) graph.

.1.2. Implementations
We choose various clustering algorithms as baselines to com-

are to EagleMine, including X-means [9], G-means [10], DB-
CAN [12], STING [15], and DensityPeaks [16], etc., their settings
re listed as follows. The HDBSCAN [19] is omitted for its O(an2)

time complexity, which is prohibitive for our large graphs, where
a is the number of attributes describing the objects and n is the
umber of nodes in a graph, that is,

∑
h∈H h.6

– X-means: initialize with k-means and 5 clusters.
– G-means: set max_depth = 5, limiting no more than 16

clusters to avoid too many clusters; set the p-value = 0.01
which is insensitive.

– DBSCAN: set Eps = 1, and use Manhattan distance function
(between bins); we searched for the MinPts from the av-
erage number of nodes in bins of a histogram to the max
number by a step size = 50, and manually select the one
consistent well with human visual recognition.7

– STING: initialize c ≈ Minpts+1
πEps2

with DBSCAN’s tuned optimal
MinPts and Eps for clusters, and refine the visual result by
fine-tuning.

– DensityPeaks: use Gaussian kernel and select the best num-
ber of clusters based on the ‘‘decision graph’’ [16].

– EagleMine and EagleMine_DM: are our proposed EagleM-
ine with DTM Gaussian and whole multivariate Gaussian
respectively.

In terms of the feature spaces, we chose the degree vs. PageR-
nk and degree vs. triangle for the Tagged dataset, while the

6 The available open source implementation/packages [70,71] do not support
clustering for the weighted data as the histogram.
7 Since DBSCAN is manually tuned, we do not use OPTICS to search

parameters for it.
in-degree vs. authority and out-degree vs. hubness for the other
datasets.

To construct the histogram for different node features, the
bandwidth (i.e., bin size) for each feature can be selected accord-
ing to the plug-in methods or kernel density-estimators [72]. In
our settings, we use a heuristic rule as [2] by dividing a discrete
feature, such as degree, number of triangles, etc., into bins with
fixed bandwidth in the logarithmic scale, and for other continu-
ous features, like spectral features (hubness and authority), are
evenly divided into similar sizes in the logarithmic scale as well.
We use a fixed step size for raising water levels for EagleMine in
our experiments, i.e., set ρ = 0.2, and it is universally suitable for
all datasets from different applications.

5.2. Q1. Qualitative evaluation (vision-based)

In this part, we illustrate the results of the two-dimensional
histogram for vision-based qualitative comparison. We exhibit
the results of the comparison of different baselines and different
feature spaces in an alternative way due to the space limit. We
chose X-means, G-means, DensityPeaks, DBSCAN, STING, and Wa-
tershed as the baselines. The feature spaces include out-degree vs.
hubness, in-degree vs. authority, and #triangle vs. degree.

Figs. 2d–2i show the results on the user-retweet-message
graph of Sina Weibo data. The features are user’s out-degree and
hubness indicating how many important messages are retweeted.
As we can see, the DensityPeaks algorithm has poor cluster re-
sults since it fails to find all micro-clusters and outliers. Without
removing some low-density parts as the background, the Water-
shed algorithm treats all the groups as one or two large clusters;
hence we manually tuned the threshold of background to attain
a better result, which is similar to the groups in some level of
our water-level tree, and the final background is shown with
the gray color in Fig. 2f; however, it only recognized a few very
dense groups while failing to separate the two groups on the
right and leaving other micro-clusters unidentified. Our EagleM-
ine recognized node groups more intuitively and also identified
those micro-clusters missed by DBSCAN and STING. Note that an
unusually high portion of users in the missed micro-clusters 1⃝

and 3⃝ had been deleted, they were suspended by the system
operators for anti-spam. Besides, the micro-clusters 3⃝ and 4⃝

include users who had high out-degree but low hubness scores,
i.e., they retweeted many un-important messages (e.g., adver-
tisements). So, EagleMine identifies very useful micro-clusters
automatically as human vision does.

Moreover, Figs. 5 and 6 illustrate more examples (4 groups)
of different datasets and feature spaces. The original histogram
plots are given at the beginning of each group and followed by the
clustering result (labeled with the # cluster) of different methods.
Different colors represent different clusters (node groups) for
each method; the outliers (bins) are labeled with the blue point or
‘x’ marker. Hence, we can see that G-means and X-means produce
several node groups and over-separate those recognized by the
human vision; DensityPeaks under-separates clusters and cannot
find micro-clusters and outliers. Although manually tuned DB-
SCAN and STING can capture the majority of dense regions in each
histogram, they also overlook some suspicious micro-clusters,
e.g., micro-clusters A⃝ and C⃝ in Fig. 5e. Thus, EagleMine illus-
trates its advantages for recognizing groups, especially identifying
some micro-clusters, which are more consistent with human
vision recognition.

https://tagged.com
https://weibo.com
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.3. Q2. Quantitative evaluation

We use the Minimum Description Length (MDL) as the metric
o measure the summarization performance as [14] did, by envi-
ioning the problem of clustering as a compression problem. In
hort, it follows the assumption that the more we can compress
he data, the more accurate we can learn about its underlying
atterns, and the best model achieves the shortest MDL encoding
ength. With the MDL principle, the encoding length of EagleMine
s:

= log∗(C)+ LS + LΘ + LO + Lϵ . (4)

This model description consists of the following terms:

• The number of clusters requires log∗(C) bits.8

8 Here, log∗ is the universal code length for integers, defined as log∗(x) ≈
og2(x) + log2 log2(x) + · · ·. where only the positive terms are included in the
um [73].
 t
• The assignment S of distribution vocabulary for C node
groups requires LS = C · log (Y) bits.
• Each DTM Gaussian has |θ | = F+ (1+F )F

2 +1 free parameters,
e.g. |θ | = 6 for 2D distribution for two features. So, its
encoding requires |θ | · l0 bits, where l0 is the floating point
cost and we used 4 × 8 bits in our setting. The total
encoding length for parameters is LΘ = C |θ | · l0 bits.
• The outliers O require LO bits to encode the bin indices.
• The model error requires Lϵ bits. For a bin b in the island
αi, the expected number of nodes is h̃ =

⌊
2Ñi·P(b|θi)

⌋
, the

original count can be accurately recovered as h = h̃ +
ϵ. Thus, we encode the total description error as Lϵ =∑

b(log
∗ (h− h̃)+ 1) bits, where 1 is for encoding the sign.

As for the other methods in comparison, we calculated the
DL with the same principle as [14,74].
For these 2D histograms, the comparing results of MDL cost

re reported in Fig. 7. We can see that EagleMine achieves
he shortest encoding length, indicating a more concise and
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Fig. 6. EagleMine visually recognizes better node groups in qualitative comparison. (a)–(e): are for the homogeneous graph from Tagged website (#triangle vs.
degree). (f)–(j): use Yelp rating data (out degree vs. hubness).
Fig. 7. Quantitative performance comparison for EagleMine and baselines. MDL
is compared on different real-world datasets. EagleMine achieves the shortest
description code length, which means concise summarization, and outperforms
all other baselines.
Table 3
EagleMine’s summary for multi-dimensional feature spaces.
Features Dataset Dimension of feature space

3 4 5

Out-degree + top-k hubness Amazon 71,029 106,029 201,696
Yelp 41.391 46,971 59,267

better summarization. On average, EagleMine reduces the MDL
cost more than 81.6%, 79.0%, 65.5%, 20.2% compared with STING,
DBSCAN, X-means, and G-means respectively. EagleMine also
outperforms EagleMine_DM over 4.6% benefiting from a proper
vocabulary selection. Therefore, EagleMine summarizes the his-
togram by those recognized groups in the shortest description
length.

For the multi-dimensional histogram, we conducted EagleM-
ine in 3-, 4- and 5-dimensional features spaces on Amazon and
Yelp datasets, and used the out-degree vs. top-k hubness (top-
k left singular vectors) as features. Here we only used digitized
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able 4
uspiciousness ranking of found micro-clusters in Sina Weibo dataset.
Feature space Suspiciousness score κ(·) rankings

Out-degree vs. Hubness 1⃝, 2⃝, 3⃝, 4⃝, 6⃝, 7⃝, 8⃝, 5⃝

In-degree vs. Authority A⃝, C⃝, B⃝, D⃝

multivariate Gaussian as the vocabulary for simplicity, i.e., Ea-
gleMine_DM. The summarization results are listed in Table 3. We
can roughly conclude that including more features leads to larger
description cost for summarizing the corresponding histograms.

5.4. Q3. Anomaly detection

To demonstrate EagleMine can effectively detect the anoma-
ous, we conducted experiments on both synthetic and real-world
ata, and compare the performance with state-of-the-art fraud
etection algorithms, including SpokEn [34], GetScoop [35], and

Fraudar [40].
In the synthetic case, we injected some different size blocks

(sub-graph) as fraud (ground truth) into the real datasets. Con-
sidering the smart attacks, we also use the random camouflage
strategy to inject blocks with 50% camouflage-ratio, i.e. randomly
selecting different camouflage objects as many as the targets of
fraud. For BeerAdovate, the density of the injected block is 0.05
and the block sizes are 1k × 500 and 2k × 1k. For Flickr, the
densities of blocks are {0.05, 0.1, 0.2} and the sizes are 2k×2k and
4k×2k. We use the F1 score to measure the accuracy of detecting
the nodes of injected blocks. Fig. 8a shows the average result over
the above trials for each dataset, where GetScoop and SpokEn
are omitted for catching nothing. It is obvious that EagleMine
consistently outperforms Fraudar and achieves less variance for
all the injection types with or without camouflages.

To verify that EagleMine accurately detects anomalies in the
Sina Weibo dataset, we labeled these nodes, both user and mes-
sage, from the results of baselines and sample nodes9 of our
suspicious clusters from EagleMine. Our labels were based on the
following rules:

• user-accounts/messages which were deleted from the on-
line system (system operators found as the spams).10
• a lot of users that share unusual login-names prefixes, and

other suspicious signals: approximately the same sign-up
time, the number of friends and followers.
• messages about the advertisement or retweeting promotion,

or having lots of copy-and-paste text content.

In total, we labeled 5474 suspicious users and 4890 suspicious
messages.

EagleMine returns the micro-clusters with suspiciousness
score. Table 4 lists the ranking orders of micro-clusters identified
by EagleMine for Figs. 2i and 5e according to their suspiciousness
scores.

The anomaly detection results are reported in Fig. 2c. Using
the AUC (area under the Receiver Operating Characteristic (ROC)
curve) to measure the quality of the ordered detection result of
each algorithm, the sampled nodes from these micro-clusters are
ranked in descent order of hubness or authority. The results show
that EagleMine achieves more than 10% and about 50% improve-
ment for detecting anomalous users and messages respectively,
and consistently outperforms other baselines. Furthermore, the
anomalous users identified by Fraudar and SpokEn only fall into

9 It is impossible to label all the nodes in graph considering the real
imitation.
10 The status is checked 3 year later (May 2017) with API provided by Sina
eibo.
the micro-cluster 1⃝ in Fig. 2i due to that they simply focus on
the densest core in a graph, but our EagleMine detects suspicious
objects by recognizing all those noteworthy micro-clusters in
the whole feature space. Therefore, EagleMine can spot more
anomalies than the baselines, e.g., some extra micro-clusters 2⃝,
3 , and 4⃝ in the feature space.

.5. Q3. Case study and patterns we found

As discussed above, the micro-clusters 3⃝ and 4⃝ in the out-
egree vs. hubness feature space of Fig. 2i contain those users
requently retweet some un-important messages. Also, we study
he behavior patterns of the users in micro-clusters 1⃝ and 2⃝
on the right side of the major node group and find that almost
half of them have been deleted by the system operator, and many
existing users share unusual names prefixes as Fig. 2b shown, like
the ‘best*’, ‘baby*’, and ‘18-year-old*’, etc.

What patterns have we found? Fig. 8b shows the ‘Jellyfish’
structure of the subgraph consisting of users from the micro-
clusters 1⃝ and 2⃝ in Fig. 2i. The head of ‘Jellyfish’ is the densest
core ( 1⃝), where the users created unusual large dense connec-
tions to a group of messages, showing high hubness. These users
(spammers or bots) aggressively retweeted a similar message
collection (i.e. A⃝ in Fig. 5e). In the meantime, users from 2⃝
connected to some of the messages in A⃝, and ‘copy-and-paste’
any advertising messages on a few topics, e.g., ‘new game’, ‘apps

n IOS7’, and ‘Xiaomi Phone’, their structure looks like ‘Jellyfish’
ail. Thus, the bots in 2⃝ show lower hubness than those in
1 since being of the different spamming strategies, which are
verlooked by other density-based detection methods.

.6. Q4. Generalization

We investigate the ability of EagleMine for detecting other
nteresting patterns in different scenarios rather than graphs.

Given a set of retweeting activities for the post of several users,
ow can we spot the collective anomalies and synchronized be-
avior [2]? ND-SYNC [75] released their data about Retweet Fraud
etection based on multiple time-related features extracted from
he retweet thread, reflecting the intra- and inter-synchronicity of
raudsters compared to the honest for their temporal character-
stics. This dataset includes 298 users and their 134,022 retweet
hreads (83,587 for the honest and 50,435 for fraudulent users)
rom Twitter, each of the thread has a manually verified label.

We tested the performance of EagleMine on the histograms
onstructed from the following features as examples,

• Retweets: number of retweets
• Response time: time elapsed between the tweets’ posting

time and its first retweet
• Lifespan: time elapsed between the first and last (observed)

retweet
• RT-Q2 response time: tine elapsed after the tweet’s posting

time to generate the first half of the retweets

Fig. 9 illustrates the detection results of EagleMine. Although
here are some more complicated distributions than the graph
eatures, EagleMine accurately identifies most of the vary-type
icro-clusters and provides an intuitive summarization. These
etected micro-clusters reveal the RT fraudsters’ behavior in dif-
erent feature spaces and their synchronic temporal activity.

As Figs. 9c and 9f show, most of these node groups away from
he major island contain a high percentage of fraudsters (as the
ext marked). Among those micro-clusters, the least one contains
2% anomaly, and others contain 99%–100% items belonging to
he anomaly, Compared with the histograms, we can find that
he anomalies in micro-clusters have great diversity for different
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Fig. 8. EagleMine’s performance for anomaly detection. (a) EagleMine achieves best accuracy for detecting injected fraud for BeerAdvocate (‘Beer’ as the abbr.) and
lickr data. *Note that GetScoop and SpokEn are omitted for failing to catch any injected object. (b) The anomalous ‘Jellyfish’ anomaly pattern identified in Sina
eibo.
Fig. 9. EagleMine performance for temporal fraudsters retweet activity. The retweet threads are mapped to different feature space. (a): Response time vs. Retweets.
d): RT-Q2 response time vs. Lifespan. (b), (e) show the summarization of EagleMine with DTM Gaussian similar to Fig. 2a (c) and (f) show the detected cluster.
ost of the micro-clusters contain a high percentage of fraudsters (marked with text).
eatures, e.g., the response time can be short as about 14 s or be
s long as 300 s and even 2800 s
Therefore, our method can be used for general histogram anal-

sis to detect some micro-clusters and interesting patterns for
eal-world applications. Besides, network traffic and livestream
onitoring are also possible suitable scenarios, we can explore
ther patterns if related data are available.

.7. Q5. Scalability

Fig. 10 shows the near-linear scaling of EagleMine’s running
ime in the number graph nodes. Here we used the Sina Weibo
ataset and selected the snapshots of the graph, i.e. the reduced
ubgraphs, according to the timestamp of edge creation in the
op 3, 6, . . . , 30 days, to test our method. The slope of the black
ot line in Fig. 10 indicates the linear growth; EagleMine_DM
lgorithm, the extension version, is also linearly scalable.
6. Conclusions

In this paper, we propose a tree-based approach EagleMine
to mine and summarize all node groups in a histogram of a
large graph. The EagleMine algorithm finds the optimal clusters
based on a water-level tree and the statistical hypothesis test, and
describes them with a configurable vocabulary-based model, and
can also spot some suspicious node groups. EagleMine has the
following desirable properties:

• Automated summarization: EagleMine automatically sum-
marizes a histogram derived from some correlated features
with the vocabulary of distributions, and recognizes node
groups as human vision does.
• Effectiveness: EagleMine detects interpretable

micro-clusters and achieves better summarization for a his-
togram. It outperforms the baselines in both qualitative
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Fig. 10. EagleMine is scalable. EagleMine and EagleMine_DM scale (sub-) linearly
with the number of nodes in graph (or the total value in histogram).

(consistent with human vision recognition) and quantitative
comparison.
• Anomaly detection: EagleMine can detect some explainable

anomalies on the real large graphs and achieves better accu-
racy for finding suspicious users and messages in Sina Weibo
data compared with other baselines. EagleMine also detects
micro-clusters for spotting suspicious objects in other ap-
plications beyond the graph, like the temporal synchronized
behavior in the event stream.
• Scalability: EagleMine algorithm runs near linear in the

number of graph nodes (or # of records), it can also deal
with the multi-dimensional correlated features.

To obtain better vision judgment and summarization for the
ulti-dimensional histogram is still a challenging problem, our
agleMine_DM (with the multivariate Gaussian distribution as
ocabulary terms) provides a promising choice for its comparable
ood performance and linear running time, and many theoretical
ell-defined hypothesis test approaches that can be used to
etermine the optimal clusters in the histogram.
However, we believe that there are still many directions for

he possible extension of this work. Among others, an interesting
roblem is how to design data-driven approaches for constructing
istogram to consider the distribution properties of different fea-
ures, like the short-burst intuition of the temporal information
or the fraudulent clusters; thus, this would greatly improve the
lgorithm’s robustness and ability to distinguish between the
onest and truly fraudulent clusters more accurately. An inter-
sting theoretical direction would be exploring the properties of
raph-related features and the tools or models to capture them,
ike the distribution of spectral features of graph nodes, as well
s the high-dimensional statistical techniques for feature-based
attern mining to incorporate the powerful graph representation
mbedding.
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