
SUPPLEMENTARY

Proof of Axioms
Proof. PROOF OF AXIOM 1
Start from the definition of g(S),

g(S)− g(S̃) = 1

|S|
∑
vi∈M

(1 + λ)fi(S)− λqi(S)

− 1

|S̃|

∑
vi∈M

(1 + λ)fi(S̃)− λqi(S̃).

Since |S|= |S̃| ∧ f(S̃) > f(S) ∧ q(S)−f(S) = q(S̃)−
f(S̃), it is obviously that g(S̃) > g(S). �

Proof. PROOF OF AXIOM 2
|S|= |S̃| ∧ f(S) = f(S̃), hence we have q(S̃)− f(S̃) <
q(S)− f(S), for given |S|= |S̃|. Since f(S) = f(S̃), then
g(S̃) > g(S). �

Proof. PROOF OF AXIOM 3
Given the conditions, we have f(S) = f(S̃) ∧ q(S̃) −
f(S̃) = q(S) − f(S). And since g(S) > 0, g(S̃) > 0,
then g(S̃)/g(S) = |S|/|S̃|. Since |S̃|< |S|, hence g(S̃) >
g(S). �

Proof of Lemmas
Proof. PROOF OF LEMMA 1
We can express g(S) as follows:

g(S) = 1

|S|
∑
vj∈M

(λ+ 1)wj(S)

Now, suppose ∃vi ∈ S∗ such that (λ + 1)wi(S∗) < g(S∗),
we have two cases to consider:
If vi ∈M∗, by removing vi from S∗, we have:

g(S∗\vi) =
∑
vj∈M∗ (λ+ 1)wj(S∗)− (λ+ 1)wi(S∗)

|S∗|−1
.
If vi ∈ A∗ ∪ C∗, by removing vi from S∗, the out-degree
or in-degree of the nodes connected to vi inM∗ is reduced,
hence the minimum fj(S∗) or maximum qj(S∗) for vj ∈
M∗ is reduced. To obtain a lower bound of g(S∗\vi), we
only need to consider the worst case that all the edges of vi
contributes to fj(S∗) of the middle nodes they are connected
to. Therefore, in the worst case, the numerator of objective
is reduced at most (1 + λ)di(S∗).
In both cases,

g(S∗\vi) ≥
∑
vj∈M∗ (λ+ 1)wj(S∗)− (λ+ 1)wi(S∗)

|S∗|−1

>

∑
vj∈M∗ (λ+ 1)wj(S∗)− g(S∗)

|S∗|−1

=

∑
vj∈M∗ (λ+ 1)wj(S∗)(1− 1/|S∗|)

|S∗|−1
= g(S∗),

which is a contradiction, since g(S∗) is the optimal solution.
�

Proof. PROOF OF LEMMA 2
There are two cases:
Case 1:∀vi ∈ A∗ ∪ C∗, we have wi(S ′) = di(S ′) and
wi(S∗) = di(S∗). Since S∗ ⊆ S ′, then di(S ′) ≥ di(S∗).
Then we have wi(S ′) ≥ wi(S∗).
Case 2:∀vi ∈M∗,wi(S ′)−wi(S∗) = fi(S ′)− λ

λ+1qi(S
′)−

(fi(S∗) − λ
λ+1qi(S

∗)). Since S∗ ⊆ S′, then d+i (S
′) ≥

d+i (S
∗) and d−i (S

′) ≥ d−i (S∗). Hence fi(S′) >= fi(S
∗).

Then we have wi(S ′)−wi(S∗) ≥ − λ
λ+1 (qi(S

′)− qi(S∗)),
and wi(S ′) ≥ wi(S∗)− λ

λ+1 (qi(S
′)− qi(S∗)).

�

Proof of Complexity
Proof. PROOF OF COMPLEXITY
The most time consuming steps are in Lines 5 to 10 in in
Alg 1 . The priorities of elements in T will change when
removing a node v from subset S. The changed nodes are the
neighbors of v. At the end of iteration, almost all the nodes
are removed once. Thus, overall, the algorithm updates the
priority tree O(k|E|) times. Each update for tree T with size
|V| requires O(log|V|). Therefore, the time complexity of
FlowScope is O(k|E|log|V|). �

Proof of Theorems
Proof. PROOF OF IMPLICATION THEOREM 1
If no nodes in S∗ are removed in the algorithm before all the
other nodes are removed, then Ŝ = S ′ = S∗ and satisfies
the bound.
If vi ∈ S ′ contains other nodes than S∗, then S∗ ⊂ S ′:
since vi is the next node removed in S ′ by FlowScope, then
we have

g(S ′) = 1

|S ′|
∑

vj∈M′
(1 + λ)wj(S ′) ≥

|M ′|
|S′|

(1 + λ)wi(S ′)

And we then have two cases:
Case 1: If vi ∈ A∗ ∪ C∗:
By the first part of Lemma 2 followed by Lemma 1, we have:
|M ′|
|S′|

(1 + λ)wi(S ′) ≥
|M ′|
|S′|

(1 + λ)wi(S∗) ≥
|M ′|
|S′|

g(S∗)

Case 2: If vi ∈M∗:
Since S ′ ⊆ V so qi(S ′) ≤ qi(V). Hence by the second part
of Lemma 2 followed by Lemma 1, we have:

g(S ′) ≥ |M
′|

|S′|
((1 + λ)wi(S

∗)− λ(qi(V)− qi(S∗)))

≥ |M
′|

|S′|
(g(S∗)− λ(qi(V)− qi(S∗)))

≥ |M
′|

|S′|
(g(S∗)− λε)

Moreover, g(Ŝ) returned by FlowScope is the maximum ob-
jective during the iterations, i.e. g(Ŝ) ≥ g(S ′). Therefore
our bound holds for both of the two cases.

�



Proof. PROOF OF IMPLICATION THEOREM 2
It can be inferred from Theorem 1 that

g(S∗) ≤ |S
′|

|M′|
g(Ŝ) + λε.

then,

n0(
|S ′|
|M′|

g(Ŝ) + λε) ≥ n0g(S∗)

=
∑
vi∈S∗

fi(S∗)− λ(qi(S∗)− fi(S∗))

=
∑
vi∈S∗

fi(S∗)− λη
∑
vi∈S∗

fi(S∗)

= (1− λη)
∑
vi∈S∗

fi(S∗)

which implies∑
vi∈S∗ fi(S

∗)

n0
≤ 1

1− λη
(
|S′|
|M ′|

g(Ŝ) + λε)

�


