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Abstract
Given a large graph, can we learn its node embeddings from
a smaller summary graph? What is the relationship between
embeddings learned from original graphs and their summary
graphs? Graph representation learning plays an important
role in many graph mining applications, but learning em-
beddings of large-scale graphs remains a challenge. Recent
works try to alleviate it via graph summarization, which typ-
ically includes the three steps: reducing the graph size by
combining nodes and edges into supernodes and superedges,
learning the supernode embedding on the summary graph and
then restoring the embeddings of the original nodes. How-
ever, the justification behind those steps is still unknown.
In this work, we propose GELSumm, a well-formulated
graph embedding learning framework based on graph sum-
marization, in which we show the theoretical ground of learn-
ing from summary graphs and the restoration with the three
well-known graph embedding approaches in a closed form.
Through extensive experiments on real-world datasets, we
demonstrate that our methods can learn graph embeddings
with matching or better performance on downstream tasks.
This work provides theoretical analysis for learning node em-
beddings via summarization and helps explain and under-
stand the mechanism of the existing works.

Introduction
Graph representation learning has attracted much research
interest in recent years due to its success in various applica-
tions including biology, computer vision, text classification,
and more. However, learning node representations of large
graphs still remains a problem due to high computational
complexity and memory usage.

To overcome this problem, some researchers resort to
graph summarization methods. They first summarize (some
may use the term “coarsening”) the input graph into a
smaller summary graph by grouping subsets of nodes into
supernodes, and then learn supernode embeddings of the
summary graph. After that, these embeddings are pro-
jected back to the original nodes embeddings with an ad-
ditional refinement step. Since the size of the graph is de-
creased, the running time and memory cost are largely re-
duced. Representative works include HARP (Chen et al.
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Table 1: The closed-form solutions for learning origi-
nal graph embeddings from smaller summary graphs by
DeepWalk, LINE, and GCN, using restoration matrix R.
E is embeddings on original graph G, and Es is embed-
dings on summary graph Gs.

2018), MILE (Liang, Gurukar, and Parthasarathy 2018), and
GraphZoom (Deng et al. 2020).

A key limitation of the existing summarization-based so-
lutions is the lack of theoretical analysis. Existing meth-
ods summarize the input graph in a heuristic way and then
empirically restore the embeddings of the original nodes
from the supernode embeddings, without deeply exploring
the connection between them. Thus, there are no theoreti-
cal studies of the underlying mechanism. Due to the lack of
theoretical study, the following questions arise naturally:

• What is the theoretical mechanism behind learning node
embedding via summarization?

• What is the connection between node embeddings of
original graphs and summary graphs?

• Which summarization method should we use, and how
should we restore embeddings correspondingly with the
theoretical ground?

In this work, we aim to answer the above questions and
fill the theoretical gap. Specifically, we theoretically show
that applying three node embedding methods (DeepWalk,
LINE, and GCN) on summary graphs is equivalent to apply-
ing them on a reconstructed graph based on the configura-
tion model. As a result, original node embeddings can be ap-
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proximated by the embeddings of summary graphs through
a simple linear transformation. These theoretical results help
explain the empirical success of the existing works, and
bring more knowledge and understanding about this prob-
lem.

Based on the theory, we propose GELSUMM, a
novel graph embedding learning framework based on
summarization, which aims to learn node embeddings of
the input graph from a smaller summary graph, while also
providing theoretical justification. We evaluate it on several
real-world datasets and show that GELSUMM can learn high
quality node embeddings with similar or even better perfor-
mance efficiently.

In summary, our contributions include:

• Theory. We analyze three node embedding learning
methods, DeepWalk, LINE and GCN, and theoretically
show that embeddings learned on original graphs by
them can be approximated by that on summary graphs
in a closed-form, as summarized in Table 1.

• Framework. Based on the derived theory, we propose
a novel and well-formulated framework, GELSUMM,
which learns node embeddings for the original graph ef-
ficiently from a smaller summary graph.

• Extensive Experiments. We conduct thorough empirical
analysis on multiple real-world datasets, and demonstrate
that our proposed GELSUMM can learn high-quality
node embeddings using much less time.

Related Work
Graph representation learning. Graph representation
learning (Cai, Zheng, and Chang 2018; Goyal and Fer-
rara 2018) aims to map each node in graphs into a low-
dimensional vector (called embedding or representation)
which captures the structural information. The learned la-
tent embeddings can then be fed into machine learning and
data mining algorithms for various downstream tasks, such
as node classification and link prediction.

A few representative examples from the rich literature in
graph representation learning include: DeepWalk (Perozzi,
Al-Rfou, and Skiena 2014), node2vec (Grover and Leskovec
2016), LINE (Tang et al. 2015), and graph neural network
(GNN) methods (Zhou et al. 2019; Wu et al. 2021), such
as GCN (Kipf and Welling 2017), GraphSAGE (Hamilton,
Ying, and Leskovec 2017) and GAT (Veličković et al. 2018),
which adopt a message-passing framework and update the
node embeddings based on their neighbors’ representations
recursively.

Although graph representation learning methods are suc-
cessful, their lack of scalability and efficiency is an impor-
tant problem. To tackle this problem, some works employ
sampling techniques, including layer sampling (Chen, Zhu,
and Song 2018; Chen, Ma, and Xiao 2018; Huang et al.
2018) and subgraph sampling (Ying et al. 2018; Chiang
et al. 2019; Zeng et al. 2020).

Embedding learning by summarization. Another way to
improve the scalability of node embedding learning methods
is via graph summarization (Yan et al. 2019; Liu et al. 2018).

Symbol Definition

G=(V, E) Original graph with nodeset V and edgeset E
Gs=(Vs, Es) Summary graph with supernodes Vs and su-

peredges Es

Gr=(V, Er) Reconstructed graph with nodeset V and edgeset
Er

vi Node i in the original graph G
Sp Supernode p in the summary graph Gs

di, d
(s)
p Degree of node i and supernode p

A,As,Ar Adjacency matrix of original, summary, recon-
structed graph

D,Ds Degree matrix of original and summary graph
P,Q Membership and reconstruction matrix in summa-

rization
R Restoration matrix for recovering the original em-

beddings
E,Es Embeddings of original graph and summary graph

Table 2: Major Symbols and Definitions.

The typical approach is to coarsen the original graph into
a smaller summary graph, and apply representation learn-
ing methods on it to obtain intermediate supernode embed-
dings. The embeddings of the original nodes are then re-
stored from supernode embeddings with a further refine-
ment step. For example, HARP (Chen et al. 2018) finds a
series of smaller graphs which preserve the global structure
of the input graph, and learns representations hierarchically.
HSRL (Fu, Hou, and Yao 2019) learns embeddings on multi-
level summary graphs, and concatenate them to restore orig-
inal embeddings. MILE (Liang, Gurukar, and Parthasarathy
2018) repeatedly coarsens the input graph into smaller ones
using a hybrid matching strategy, and finally refines the em-
beddings via GCN to obtain the original node embeddings.
GPA (Lin et al. 2020) uses METIS (Karypis and Kumar
1998) to partition the graphs, and smooths the restored em-
beddings via a propagation process. GraphZoom (Deng et al.
2020) employs an extra graph fusion step to combine the
structural information and feature information, and then uses
a spectral coarsening method to merge nodes based on their
spectral similarities. Embeddings are then refined by a graph
filter to ensure feature smoothness. (Fahrbach et al. 2020)
learns embeddings of the given subset of nodes by coarsen-
ing the remaining nodes, which is not capable to learn em-
beddings of the remaining ones.

These methods, however, are based on heuristic designs
and lack theoretical formulation and analysis.

Preliminary
In this section, we introduce two topics, graph representation
learning and graph summarization.Table 2 gives the most
frequently used symbols in the paper.

Graph Embedding Methods

Within our framework, we theoretically analyze DeepWalk,
LINE, and GCN, so we discuss them in more detail here.
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DeepWalk and LINE DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014) is an unsupervised graph representation learn-
ing method inspired by the success of word2vec (Mikolov
et al. 2013b,a) in text embedding. It generates random walk
sequences and treats them as sentences that are later fed into
a skip-gram model with negative sampling to learn latent
node representations.

It has been proved in (Qiu et al. 2018) that DeepWalk is
implicitly approximating and factorizing the following ma-
trix:

M := log

(
vol(G)

(
1

T

T∑
τ=1

(D−1A)τ
)
D−1

)
− log b, (1)

where T and b are the context window size and the number
of negative samples in DeepWalk, respectively.

LINE (Tang et al. 2015) learns embeddings by optimiz-
ing a carefully designed objective function that aims to
preserve both the first-order and second-order proximity.
Though LINE and DeepWalk appear to be different, it has
been shown that LINE is also equivalent to factorizing a sim-
ilar matrix to Eq. (1) and is a special case of DeepWalk for
T = 1 (Qiu et al. 2018):

M := log
(
vol(G)D−1AD−1

)
− log b. (2)

GCN GCN (Kipf and Welling 2017) is a graph neural net-
work model transferring traditional convolution neural net-
work to non-Euclidean graph data. In each layer of GCN,
node features are propagated based on a first-order approxi-
mation of spectral convolutions on graphs:

E(k+1) = σ(D̃− 1
2 ÃD̃− 1

2E(k)W(k)) , (3)

where E(k) are the node embeddings at the k-th layer,
E(0) = X is the input node feature matrix, W(k) is a learn-
able weight matrix at the k-th layer, Ã = A + I is the aug-
mented adjacency matrix with self-loops (I is the identity
matrix), and D̃ is the corresponding augmented degree ma-
trix. Finally, σ(·) is the non-linear ReLU operation as an ac-
tivation function, i.e., σ(x) = max(0, x).

Graph Summarization
Given an input graph G = (V, E) with n = |V| nodes,
graph summarization aims to find a smaller summary graph
Gs = (Vs, Es) (with ns = |Vs| nodes) that preserves the
structural information of the original graph. The supernode
set Vs forms a partition of the original node set V such
that every node v ∈ V belongs to exactly one supernode
S ∈ Vs. The supernodes are connected via superedges Es,
which are weighted by the sum of original edges between
the constituent nodes. That is, superedge As(p, q) between
supernodes Sp, Sq is defined as:

As(p, q) =
∑

vi∈Sp

∑
vj∈Sq

A(i, j).

The adjacency matrix of the summary graph can be for-
mulated using a membership matrix P ∈ Rns×n as: As =
PAPT, where

P(p, i) =

{
1 if vi ∈ Sp
0 otherwise.

Given the summary graph Gs, the original graph G can be ap-
proximated with the reconstructed graphs Gr with adjacency
matrix Ar defined as:

Ar = QAsQ
T , (4)

where Q ∈ Rn×ns is the reconstruction matrix. Note that
Ar can be seen as a low-rank approximation of the origi-
nal A.

A natural way to formulate a summarization approach is
by minimizing the difference between A and Ar, so sum-
marization and reconstruction are closely related. Specifi-
cally, in this work, we consider the configuration-based re-
construction scheme (Zhou et al. 2021), which adopts the
configuration-based model as null model. In that case, re-
constructed edge weights are proportional to degrees of end-
points. Q and Ar are defined as:

Q(i, p) =

{
di

d
(s)
p

if vi ∈ Sp
0 otherwise

(5)

Ar(i, j) =
di

d
(s)
p

As(p, q)
dj

d
(s)
q

vi ∈ Sp, vj ∈ Sq (6)

d
(s)
p is defined as d(s)p =

∑
vi∈Sp

di.
We will later show that, this reconstruction scheme plays

an important role in our theoretical analysis.

Proposed methods
Given the problem definition, we now give our theoretical
analysis and propose GELSUMM framework.

Theory
In this section, we theoretically reveal the mechanism be-
hind the approach of learning embeddings on summary
graphs. In short, we show that running three embed-
ding methods (DeepWalk, LINE and GCN) on a summary
graph is equivalent to running them on an approximate
configuration-based reconstructed graph.

Approximating kernel matrices We begin our derivation
with the following kernel matrix, which appears in three
node embedding learning methods DeepWalk, LINE and
GCN. By comparing the core function of DeepWalk, LINE
and GCN, we observe that a common kernel matrix can be
extracted as:
Definition 1 (Kernel Matrix). DeepWalk, LINE, and GCN
are based on the following generalized kernel matrix:

K(G) :=
(
D−cAD−1+c

)τ
D1−2c, (7)

where 0 ≤ c ≤ 1 and τ is a positive integer. A and D are
adjacency matrix and degree matrix of G respectively.
Remark. For c = 1, we get K(G) = (D−1A)τD−1 ap-
pears in DeepWalk and LINE (see Eq. (1),(2)). For c = 1

2 , we
get K(G) = (D− 1

2AD− 1
2 )τ appears in GCN (see Eq. (3)).

As we show next in Lemma 1, under the configuration-
based reconstruction scheme (see Eq. (5) and (6)), this ker-
nel matrix on the original graph,K(G), can be approximated
with the same kernel matrix on the summary graph, K(Gs),
in a closed form.
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Lemma 1. Given Ar (reconstructed by the configuration-
based scheme) as a low-rank approximation of the original
adjacency matrix A, the kernel matrix of G can be approxi-
mated by that of Gs:

K(G) ≈
(
D−cArD

−1+c
)τ

D1−2c

= R
(
D−c

s AsD
−1+c
s

)τ
D1−2c

s RT

= R K(Gs) RT,

(8)

where R ∈ Rn×ns is the restoration matrix:

R(i, p) =


(

di

d
(s)
p

)1−c

if vi ∈ Sp

0 otherwise,

which is closely related to the configuration-based recon-
struction matrix Q given in (5).

Proof. See appendix.
■

From this general form of the reconstruction matrix, we
obtain specific cases for DeepWalk, LINE, and GCN in the
next corollaries.
Corollary 1. Based on Dfn. 1 of the kernel matrix, c = 1
corresponds to DeepWalk and LINE. In this case, (8) be-
comes:

K(G) =
(
D−1A

)τ
D−1 ≈

(
D−1Ar

)τ
D−1

= R
(
D−1

s As

)τ
D−1

s RT ,
(9)

where

R(i, p) =

{
1 if vi ∈ Sp
0 otherwise.

(10)

Corollary 2. Based on Dfn. 1 of the kernel matrix, c = 1
2

corresponds to GCN. In this case, (8) becomes:

K(G) = D− 1
2AD− 1

2 ≈ D− 1
2ArD

− 1
2

= R
(
D

− 1
2

s AsD
− 1

2
s

)
RT ,

(11)

where

R(i, p) =

{√
di

d
(s)
p

if vi ∈ Sp
0 otherwise.

(12)

Note that RTR = I and R† = RT (R† denotes the
pseudo-inverse of R) in Corollary 2, which is important in
our analysis of GCN.

Approximating DeepWalk / LINE Based on Corollary
1, we now discuss how to approximate the DeepWalk and
LINE node embeddings for the original nodes. Since LINE
is a special case of DeepWalk, we focus on the former; sim-
ilar conclusions can be easily drawn for LINE.
Theorem 1. Embeddings learned by DeepWalk on the orig-
inal graph G, E, can be approximated by embeddings
learned by DeepWalk on the summary graph Gs, Es, using
the restoration matrix R in (10), i.e.,

E ≈ R Es (13)

Proof. See appendix. ■

According to Theorem 1 and the definition of R matrix
(R(i, p) = 1 if vi ∈ Sp), we can conclude that nodes in the
same supernode get the same embeddings after the restora-
tion. This approach, is exactly the way how related works
(including HARP, MILE and GraphZoom) restore the em-
beddings. Thus, Theorem 1 provides a theoretical interpre-
tation for the restoration step of existing methods.

Approximating GCN Given the embeddings Es learned
by GCN on the summary graph which are usually the out-
put of the last convolution layer, i.e. Es = E

(K)
s , we can

approximate original node embeddings E, as stated in the
following theorem.
Theorem 2. Embeddings learned by GCN on the origi-
nal graph G can be approximated by embeddings learned
by GCN on the summary graph Gs with initial features
Xs := RTX, using the restoration matrix R defined in (12),
in a least-square approximation perspective:

E ≈ R Es (14)

And suppose that the GCN model on the summary graph and
the original graph share the same model parameter, then the
reconstruction error is bounded by:

∥E−REs∥ ≤ CK
√

2KL(A∥Ar)

(
K−1∏
l=0

∥∥∥W(l)
∥∥∥)∥∥∥E(0)

∥∥∥
(15)

where C =
√∑

i(1− λi)2 is a constant only depends on
the input graph. λi is the i-th eigenvalue of the normalized
Laplacian matrix L (defined as L = I − D− 1

2AD− 1
2 ).

And KL(A∥Ar) is the KL-divergence between A and Ar

(see Appendix), which is included in the objective function
of summarization algorithm we use.

Proof. See appendix. ■

Algorithms
From the theory we develop above, learning embeddings on
a summary graph with restoration is equivalent to learning
embeddings on a graph reconstructed by the configuration
model. Thus, the closer the original graph and the recon-
structed one is, the better the embeddings are. This fact mo-
tivates us to consider the configuration-based reconstruction
scheme in the summarization step.

Specifically, we use a graph summarization method
DPGS (Zhou et al. 2021) which utilize the configuration-
based reconstruction method. It is based on MDL (Minimum
Description Length (Rissanen 1978)) principle and aims to
minimize the total description length of both the model cost
and configuration-based reconstruction error. More details
of the summarization algorithm are provided in appendix.

Subsequently, we propose GELSUMM, which aims to
learn embeddings for large graphs by summarization. It con-
sists of four steps:
• (S1) Summarization. First, given the input graph G, we

use a configuration-based summarization method(Zhou
et al. 2021) to obtain a summary graph Gs.

4949



DeepWalk LINE
orig r=0.6 r=0.4 r=0.2 orig r=0.6 r=0.4 r=0.2

Cora acc (%) 72.11 73.29 73.87 74.67 68.27 66.37 65.63 68.79
time (secs) 107.274 59.452 39.334 17.255 14.246 9.313 6.233 3.172

Citeseer acc (%) 46.24 48.87 48.61 49.08 41.36 44.81 45.15 46.13
time (secs) 111.022 67.802 42.414 12.641 16.991 7.885 5.305 3.376

Pubmed acc (%) 72.35 73.31 73.93 74.05 68.51 69.74 71.40 69.86
time (secs) 875.838 523.848 359.602 175.897 112.067 65.563 50.331 31.578

Flickr acc (%) 53.19 53.36 53.02 52.87 51.47 52.42 52.26 50.72
time (secs) 6142.00 3203.27 2095.68 1439.87 528.04 270.05 168.74 92.12

Table 3: Node classification results(DeepWalk & LINE). Average running times and accuracy scores over 10 runs are reported.
“orig” represents the results on original graphs. r stands for the relative node size. The running time includes the summarization
time, the embedding learning time and the refinement time. It can be observed that GELSUMM-DeepWalk and GELSUMM-
LINE obtain better results than original DeepWalk and LINE using much less time.

Algorithm 1: GELSUMM-DeepWalk/LINE/GCN

Input: Input graph G, power of filter k, embedding method
M

Output: Original embeddings E
1: Gs ← Run the configuration-based summarization on G
2: Es ←M(Gs)
3: E← R ·Es

4: E← (D̃− 1
2 ÃD̃− 1

2 )k E
5: return E

• (S2) Embedding Learning. Next, the chosen embed-
ding learning methodM (DeepWalk, LINE or GCN), is
employed on the summary graph Gs to obtain supernode
embeddings Es =M(Gs).

• (S3) Restoration. Then, we restore the embeddings of
the original nodes, E, from Es using the restoration ma-
trix R, i.e., E ← R Es. The definition of R varies de-
pending on the methodM used in step (S2).

• (S4) Refinement. Finally, in order to further refine the
restored embeddings E, we apply k times a low-pass
smoothing filter, D̃− 1

2 ÃD̃− 1
2 to smooth the restored em-

bedding1. It is shown that it can filter out high-frequency
noise and keeps low-frequency signals that are useful
for downstream tasks (NT and Maehara 2019; Wu et al.
2019; Deng et al. 2020).

Based on the steps described in previous sections and
Theorems 1 and 2, we propose three corresponding al-
gorithms: GELSUMM-DeepWalk, GELSUMM-LINE, and
GELSUMM-GCN, described in Algorithm 1.

First, a summary graph Gs is obtained by the
configuration-based graph summarization algorithm (S1),
and then fed into a base embedding learning algorithm to
learn embeddings Es (S2). Original embeddings are then
restored from Es using corresponding matrix R (S3), and
further refined by a smoothing operator (S4). The refine-
ment step is efficient and its time cost is ignorable compared

1Ã = A + I is the augmented adjacency matrix and D̃ is the
corresponding degree matrix

Dataset |V| |E| Type

Cora 2,708 5,278 Citation
Citeseer 3,327 4,552 Citation
Pubmed 19,717 44,324 Citation
Flickr 89,250 899,756 Social
Reddit 232,965 11,606,919 Social

Amazon2M 2,449,029 61,859,076 Co-Purchasing

Table 4: Dataset statistics.

to the embedding learning time. Note that in GELSUMM-
GCN, self-loops are added to G, since GCN uses augmented
adjacency matrix Ã = A+ I.

To learn supernode embeddings using GCN, we need
to assign labels to supernodes. In this paper, we adopt a
majority-vote method that assigns the dominating label with
the maximum count, i.e., label(Sp) = argmaxl |{vi|vi ∈
Sp, label(vi) = l}|. That is, the label of a supernode is the
dominating label of its constituent nodes.

Experiments
In this section, we conduct extensive experiments to answer
the following questions:
• Q1 Effectiveness of GELSUMM-DeepWalk/LINE: Is

GELSUMM-DeepWalk and GELSUMM-LINE able to
learn high-quality embeddings efficiently from summary
graphs compared to baselines?

• Q2 Effectiveness of GELSUMM-GCN: Is GELSUMM-
GCN able to learn high-quality embeddings for semi-
supervised node classification task?

• Q3 Scalability: Is GELSUMM scalable and can be ap-
plied to large graphs with up to 2 million nodes?

Experiment Setup. All experiments are conducted on a ma-
chine with a 2.40 GHz Intel Xeon E5-2640 CPU, a Tesla
K80 GPU, and 128 GB RAM. For the summarization algo-
rithm, we use the source code released by (Zhou et al. 2021).
We implement DeepWalk in Python and use LINE’s code re-
leased by the authors2.

2https://github.com/tangjianpku/LINE
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Cora Citeseer Pubmed Flickr Reddit

orig
acc(%) 80.20 69.70 78.02 52.89 94.55
time(secs) 1.92 2.49 5.22 30.77 476.31

r = 0.6
GELSumm acc(%) 80.90 70.46 77.38 50.15 93.62
Empirical acc(%) 80.64 69.94 76.88 48.75 92.55
time(secs) 1.232 1.4 1.91 22.42 345.72

r = 0.4
GELSumm acc(%) 77.76 67.62 76.98 49.80 93.11
Empirical acc(%) 77.40 66.18 76.6 48.76 87.91
time(secs) 1.14 1.28 1.65 87.91 292.44

r = 0.2
GELSumm acc(%) 75.22 67.64 73.92 49.51 91.90
Empirical acc(%) 75.24 67.64 73.72 46.15 87.97
time(secs) 1.01 1.12 1.33 13.16 253.26

Table 5: Node classification results (GCN) on five datasets. “orig” represents the results on original graphs. Using proposed
GELSUMM restoration method yields consistently better results than empirically restoration method.

Datasets. Datasets used in our experiments contain three ci-
tation networks, two social networks, and one co-purchasing
network. The statistics of them are listed in Table 4. In the
first three citation networks, nodes represents documents
and edges are citation among them. Bag-of-word vectors
are used as node features. For Flickr dataset, each node is
an image on the Flickr website, and if two images share
some properties, there is an link between them. For Red-
dit dataset, each node is a post on Reddit, and edges repre-
sent co-comment by the same user. The largest dataset Ama-
zon2M, a product network linked by co-purchase behaviors,
is tested for scalability. We use the widely-used dataset splits
as in (Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017).

Q1 Effectiveness of GELSUMM-DeepWalk/LINE
In this experiment, we evaluate GELSUMM-DeepWalk &
GELSUMM-LINE on two downstream tasks: node classifi-
cation and link prediction (placed in appendix due to space
limit). Four datasets Cora, Citeseer, Pubmed and Flickr
are used in this experiments. Reddit is not included since
running representation learning methods on it raises an
OOM(out of memory) error on our machine.

Node Classification In node classification task, we sum-
marize the original graph into several summary graphs with
different relative sizes (from 0.6 to 0.2), and run DeepWalk/-
LINE on summary graphs. The restored embeddings are
used to train a Logistic Regression classifier for node classi-
fication.
Hyperparameters: Following (Perozzi, Al-Rfou, and
Skiena 2014), in DeepWalk, we sample 10 · |V| random walk
sequences. The walk length is set to 80 and the window size
is set to 10. In LINE, we set the number of negative samples
to 5. The embedding dimension is set to 128 for all meth-
ods. For GELSUMM-DeepWalk and GELSUMM-LINE, k
is set to 2. We give analysis of the effect of paramter k in the
appendix.
Results. The experimental results (mean accuracy score
and running time of 10 runs) are shown in Table 3. We
observe that GELSUMM-DeepWalk and GELSUMM-LINE
can match or outperform original DeepWalk and LINE in

all datasets. For example, on Citeseer dataset, GELSUMM-
DeepWalk get a 2.84% performance increase using 8.78×
less time, and GELSUMM-LINE get a 4.77% accuracy in-
crease using 5.03× less time.

Comparison with existing methods. We also compare
our GELSUMM framework to the state-of-the-art methods
HARP, MILE and GraphZoom. In this experiment, we use
node classification task as the base task and choose Deep-
Walk as the base embedding learning method. For baseline
methods, we use the source codes released by the authors
off-the-shelf3. For MILE and GraphZoom, input networks
are summarized at different coarsening levels to produce
summary graph with similar sizes. We provide sizes of sum-
mary graphs obtained by baseline methods in the appendix.
For our GELSUMM, the relative sizes are [0.6, 0.4, 0.2, 0.1]
to match the summary sizes.

Running time and classification accuracy (average of 10
runs) are displayed in Figure 1. On all datasets, HARP gets
worse performance than that on original graphs. MILE keeps
relative good performance when the coarsening level is low,
but the performance drops when the coarsening level goes
higher. Our GELSUMM can obtain promising results with
much less time. Compared to GraphZoom, our GELSUMM
gets higher performance on Cora dataset, and gets compara-
ble performance using similar time on Citeseer, Pubmed and
Flickr datasets. Furthermore, compared to the baselines, our
GELSUMM provides more theoretical analysis and interpre-
tation.

Q2 Effectiveness of GELSUMM-GCN:
In this experiment, we test GELSUMM-GCN on semi-
supervised node classification task. We train GCN on sum-
mary graphs using majority-label assignment. That is, as-
signing the supernode label as the maximum-count label
within it. The restored node embeddings are used for classi-
fication after refinement.

To validate the effect of our theoretically-grounded
restoration method, we also report the classification accu-

3https://github.com/GTmac/HARP
https://github.com/jiongqian/MILE
https://github.com/cornell-zhang/GraphZoom
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Figure 1: Comparison with the baselines. “orig” represents the results on original graphs. Our algorithm obtains promising
performance using much less time.
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Figure 2: Embeddings of part of nodes from 4 classes learned via GELSUMM on Amazon2M datasets with summarization ratio
0.2 and 0.1. Vertex colors represent its category. Accuracies are given in the captions. Embeddings are projected into 2-dim
space via t-SNE. Representations of different classes are well-seperated.

racy using empirical restoration method, that is, assigning
the same embedding to nodes within a supernode.
Hyperparameters: For GELSUMM-GCN, the learning rate
is set to 0.001 and the dropout rate is set to 0.5. k is set to
1 on all datasets except Flickr and Pubmed (k is set to 2).
Training epoch is set to 200 for all datasets.
Results. Experimental results are reported in Table 5. It
can be seen that the proposed restoration method (GEL-
Summ acc) obtains consistently better results than empiri-
cal restoration method (Empirical acc) adopted by existing
works such as MILE and GraphZoom. Compared to origi-
nal GCN, the accuracy scores drop slightly (less than 4%)
after summarization, since the label information is lost dur-
ing summarization. The time speedup may not look signifi-
cance since GCN layer costs O(m) and not O(n). However,
the performance is still comparable to baselines (within 5%)
even when the size of summary graph is only 20% of the
size of the original graph.

Q3 Scalability
To test the scalability of our GELSUMM framework, we test
on a large Amazon2M dataset, which contains over 2.4 mil-
lion nodes. Running node embeddings methods on the orig-
inal graph is not applicable due to memory limit. We ap-
ply GELSUMM on summary graphs with summarization ra-
tio 0.2 and 0.1 respectively to get the original embeddings.
To show the quality of learned embeddings, we randomly
choose some nodes from 4 classes and visualize their em-
beddings via t-SNE, which is shown in Figure 2. It can be
seen that nodes from different classes are well-separated,

demonstrating that our GELSUMM can learn matchable em-
beddings of original nodes in large-scale graphs with limited
memory and less time.

Conclusion
In this work, we propose a novel and well-formulated
framework, GELSUMM, for learning node embeddings us-
ing a summarization approach. By theoretically showing
that a specific form of kernel matrix—which appears in
DeepWalk, LINE and GCN—can be approximated under a
configuration-based reconstruction scheme on the summary
graph, we propose three algorithms to learn node embed-
dings on the summary graph with a closed-form solution.
Our study helps understand the empirical success of current
related methods, and provides theoretical insights for future
works on this problem. Future directions include introducing
more embedding methods into our framework, and extend to
more graph mining tasks.
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