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a b s t r a c t 

Big data technology has had a significant impact on new business and financial services: for example, GPS and 
Bluetooth inspire location-based services, and search and web technologies motivate online shopping, reviews, 
and payments. These business services have become more connected than ever, and as a result, financial frauds 
have become a significant challenge. Therefore, combating financial risks in the big data era requires breaking 
the borders of traditional data, algorithms, and systems. An increasing number of studies have addressed these 
challenges and proposed new methods for risk detection, assessment, and forecasting. As a key contribution, we 
categorize these works in a rational framework: first, we identify the data that can be used to identify risks. We 
then discuss how big data can be combined with the emerging tools to effectively learn or analyze financial risk. 
Finally, we highlight the effectiveness of these methods in real-world applications. Furthermore, we stress on 
the importance of utilizing multi-channel information, graphs, and networks of long-range dependence for the 
effective identification of financial risks. We conclude our survey with a discussion on the new challenges faced 
by the financial sector, namely, deep fake technology, adversaries, causal and interpretable inference, privacy 
protection, and microsimulations. 
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. Introduction 

With the development of big data, people’s everyday life has been
omprehensively recorded, including their financial activities [1] . For
xample, smartphones, embedded with GPS or Bluetooth technology,
eep track of people’s visits to banks/ATMs, shopping malls, or office
uildings, which consequently generates logs of activities and even re-
eal people’s possible physical contacts [2] ; time spent on social me-
ia, search queries, and clicks are collected for users’ credit and prefer-
nce profiling; and satellite images of the earth are periodically taken by
any sites for analyzing changes in buildings and even the number of

ars parked in a parking lot at a certain time [3] . Sufficiently using and
creening these data can help us better understand and combat hidden
nancial risks [4,5] . 

Meanwhile, a range of algorithms for emerging technologies are
idely used in finance-related systems. Recommendations generated by
rtificial intelligence (AI) algorithms decide which ads, shopping items,
nd news should be prioritized. Natural language processing (NLP) mod-
ls and technologies have been adopted to understand users’ sentiments
nd opinions. Deep neural networks and intelligent algorithms are em-
∗ Corresponding authors. 
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edded into devices for real-time monitoring, smart Q&A, and assistant
obots, among others. 

Nowadays, finance has become a highly complex field; it is no more
imited to traditional banking and trading systems, stocks, and futures
arkets, but it also includes emerging digital currencies, online shop-
ing, payment systems, and even overlaps with social media and net-
orks, political campaigns, and a range of smart systems, including

he Internet of things (IoT). For example, a breaking news can shake
he foundations of a financial system, or a smart system on route plan-
ing can decide how commodities can be efficiently delivered. Fintech,
 combination of Internet, big data, and finance technologies, grows
ew businesses in various fields (e.g., payments, deposits, loans, in-
estments, and market facilities), having a significant impact on tra-
itional financial business models and laying hidden dangers. More-
ver, circulation of multiple digital currencies, such as Bitcoin, as a
ew form of foreign exchange, challenges a country’s foreign exchange
anagement. 

Therefore, financial risks in the big data era have broken the borders
f traditional data, algorithms, and systems, generating more challenges
Ai Communications Co. Ltd. This is an open access article under the CC 
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.1. Financial risks in the big data era 

According to the “2020 China Internet Finance Development Report ”
ssued by iResearch 1 , investment in financial technologies was 112 bil-
ion yuan, an increase of 19.4%, whereas investment in AI in banking
as 14.3 billion yuan, an increase of 28.8%. Furthermore, the three most
referred investment areas are smart risk control, smart insurance, and
mart customer service, accounting for more than 70% of the entire in-
estments. 

A side effect of the admission policy for high-tech companies into the
arket is that a large number of non-traditional financial institutions
ithout risk control mechanisms in place are engaged in high-risk busi-
esses. Consequently, financial fraud affecting a wide range of investors
nd communities is a possibility. The well-known financial fraudster,
Zubao, had a cumulative transaction volume of 70 billion yuan from
014 to 2015. 

As discussed previously, financial risks have different forms and de-
end on a range of factors in the big data era, such as abusing AI al-
orithms and technologies, digital currencies, and online business. To
eview these challenges for emerging financial risks, we follow a well-
nown taxonomy wherein financial risks are classified as market, credit,
iquidity, volatility, operational, and financial crime-compliance (FCC)
isks. However, our reviews mainly focus on credit, liquidity, volatility,
nd FCC risks Because their management and detection always require
he analysis of large-scale and heterogeneously related data. Moreover,
ny type of risk can cause systemic risk 2 if managed improperly, which
an result in the collapse of an entire financial system or an entire mar-
et, or it can even trigger an economic crisis. Thus, we also discuss sys-
emic risk in this paper. 

.2. Challenges of financial risk management 

The main challenges in combating financial risks in the big data era
an be summarized as follows: 

- Needs to utilize multimodal data. Big data provide a robust
method to handle financial risks. Data are generally obtained from
multiple sources or channels, such as financial reports, curves of
sales data, non-traditional information from texts, pictures, or videos
on social media, satellite images, and human mobility data. These
data are semantically correlated and sometimes provide complemen-
tary information to each other, thus reflecting an early signal for a
more reliable assessment of risks that are not visible when working
with individual channels. However, consolidating heterogeneous,
disconnected data from multiple channels is challenging given tradi-
tional models and statistical methods in financial risk management,
such as linear regression, Naive Bayes methods, and classic Hidden
Markov models (HMM). 

- Long-range and heterogeneous dependent nature. Data objects
are often related to each other; for example, companies have inter-
dependent business, and money is transferred from one account to
another. Furthermore, the relations for some data are heterogeneous,
such as networks of shareholders and companies. Some important fi-
nancial risks can only be identified through long-range dependency,
whereas short-range dependent relations cannot reflect these risks,
such as the subprime crisis in 2008. However, mining long-range
and heterogeneous dependent patterns to detect risks is quite chal-
lenging, given the existing tens of billions of data relations. 

- Dynamic and real-time characteristics. The global financial mar-
ketplace is highly dynamic and data, generated by financial orga-
nizations change in real time in terms of content and properties,
thereby posing difficulty in tracing and analysis. 
1 http://report.iresearch.cn/report/202009/3648.shtml 
2 https://en.wikipedia.org/wiki/Systemic_risk 
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- Adversary. Financial fraud and money laundering of FCC risks rely
on new advanced techniques and methods of camouflage, making
their detection difficult. 

.3. Related research projects 

In the past several years, related research projects have been funded
o study the previously mentioned challenging problems. 

The BIGDATA program of the National Science Foundation (NSF) has
unded many research projects on data science. “Understanding the Fi-
ancial Market Ecosystem ” introduces new behavioral models of finan-
ial trading using big data techniques, as well as new metrics and data
or the discipline of finance in economics. “Detecting Financial Market
anipulation: An Integrated Data- and Model-Driven Approach ” applies

nnovative data-driven approaches to improve detection and deterrence
f market manipulation. The main focus of the project is to use simula-
ion and optimization to generate manipulation strategies from market
ata streams and identify these manipulation behaviors by extracting
ignatures and spoofing activities. “Network Analytics on Complex Eco-
omic Data Streams for Monitoring Financial Stability ” focuses on iden-
ifying and predicting market participants that could endanger the over-
ll financial systems, leveraging a wide array of the diverse quantitative
nancial data stream, metadata, and market announcements. 

The National Natural Science of China (NSFC) has launched a major
esearch plan, called “Research on Big Data Driven Management and
ecision Making, ” which supports a series of basic research projects re-

ated to internet finance. “Big Data-Driven Financial Monitoring and Ser-
ice Platform and Demonstration Application ” carries out studies such
s monitoring of Internet finance and construction of knowledge maps
or Internet finance. “Value Analysis, Discovery and Collaborative Cre-
tion Mechanism of Financial Big Data based on Knowledge Association ”
ocuses on finding the connection within the knowledge and building a
arge-scale knowledge graph using an innovative approach and then ap-
lying these methods and the knowledge graph on real-world problems.
he implementation of these projects helps us better understand Inter-
et finance and provides theoretical foundations and technologies for
ig-data-driven Internet financial monitoring and services. 

.4. Content organization 

In the remainder of the paper, we provide a thorough introduction of
he financial big data with respect to data collection, organization, and
ommon types in Section 2 . We describe the emerging technologies in
ection 3 . Detailed applications of big data are summarized and listed
or the major categories of financial risks in Section 4 , and financial
rime compliance risk is specially discussed in Section 5 . We then discuss
ome future directions in Section 6 , and finally conclude the paper. 

. Data 

.1. Data collection 

Currently, collecting financial big data requires delicate manage-
ent of acquisition objects, channels, frequency, as well as target-driven

ustomization, which is generally implemented using web crawlers in
ata centers or on rented cloud resources. By setting some targets or seed
ites as initial nodes, web crawlers retrieve data iteratively along with
ebpage hyperlinks following the breadth-first or depth-first strategy.

n addition, system logs, such as event logs of a loan application process
n a bank, record various financial institutes’ activities in large amounts
hat could contribute to careful business decisions in many fields, includ-
ng risk management [6] . While retrieved structured data are ready for
ost big data algorithms, unstructured data require further processing.
any deep learning models have recently contributed to specific tasks

or extracting information from unstructured data in finance. In addi-
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7 https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized- 
transactions/ 
ion, there are general frameworks that extract structured knowledge
rom massive unstructured data, such as TextCube [7] . 

.2. Data organization 

Knowledge graphs, as a rich and intuitive technique to express
nowledge, have attracted widespread attention from the perspective
f big data organization. It is essentially a semantic network wherein
odes represent entities or concepts and edges represent various seman-
ic relationships between entities/concepts. For example, “Elon Musk
s a visionary entrepreneur, ” where “Elon Musk ” is an entity and “en-
repreneur ” is a concept. There is an “is-A ” relationship between “Elon
usk ” and “entrepreneur. ” According to its data sources, knowledge

raphs can be divided into two categories: general web pages, such as
oogle knowledge graph and Microsoft’s Bing, and relatively structured
nline encyclopedias, such as YAGO 

3 and DBPedia 4 . Event is another
mportant type of knowledge, in addition to entities/concepts and their
elations. A knowledge graph comprising events and their participants
s often called an event graph. Existing event graphs include ICEWS 5 ,
DELT 

6 and the financial event graph of the Harbin Institute of Tech-
ology. 

Knowledge graphs have become an important tool for financial risk
dentification. Using shareholding relationships among financial insti-
utes, Lv et al. [8] constructed a knowledge graph for financial equities
n China that contains more than 45 million entities/concepts and 145
illion relationships. From the equity graph, the true beneficiaries and
eople acting in concert can be revealed to guide the stable development
f the financial industry. 

.3. Data modality 

After big data are carefully structured and represented, mining their
alue becomes a major task. In recent years, the financial industry has
one beyond traditional data, such as SEC filings and press releases,
nd has paid more attention to company sales records, social networks,
redit card transaction information, positioning information, and satel-
ite images, among others, because they contain valuable information
n many issues, such as risk perception in financial markets. However,
ncorporating data from different modalities has brought challenges in
xploring the data value. Owing to big data algorithms, these insights
re now accessible to researchers and investors. 

Text data, especially those from social media, are widely used in fi-
ancial risk forecasting, detection, and management. For example, the
orm 10-k plays an important role for listed companies in textual dis-
losures, contributing to risk prediction [9] . Meanwhile, investigating
ews in the Wall Street Journal has proven the susceptibility of the stock
arket to rumors. Topic trends and sentiments on social media have also

een studied [10] , providing important seeds for further related tasks. 
Image and video data, meanwhile, can play a dominant role in de-

ecting financial fraud. For example, outlet videos of more than 10,000
 irrefutably disclosed the fraud scandal of Luckin Coffee in 2020 and
atellite images were used for identifying the fraud of Zhangzidao Group
o., Ltd. (one of the listed companies in China) by tracking the trajecto-
ies of fishing boats [11] . Audio data are also important for investor
eetings and earnings conference calls. They contains not only text

nformation but also sentiment clues, from which features can be ex-
racted to predict stock volatility [12] . Moreover, structured data gen-
rated from supply chains, such as freight records, have shown value in
lternative data utilization [13] , and combining different banking appli-
ation flows with IoT intelligence by analyzing users’ data can remind
3 https://yago-knowledge.org/ 
4 https://www.dbpedia.org/ 
5 https://www.lockheedmartin.com/en-us/capabilities/research- 

abs/advanced-technology-labs/icews.html 
6 https://www.gdeltproject.org/ 
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ustomers before their credit cards are stolen [14] . However, different
ypes of alternative data are complementary to each other for solving
pecific tasks. With the development of deep learning, the blending of
ultimodal information becomes possible through a unified model to
redict financial risks. 

.4. Public data for financial research 

Table 1 summarizes the available public data used in financial risk
esearch. 

. Emerging technologies and methodologies 

In this section, we review the emerging technologies and methodolo-
ies that learn from big data, or mine anomalies, patterns, and trends in
ig data, which are effective tools for handling financial risks in the big
ata era. 

.1. Deep learning and representation learning 

The key to effectively utilizing multimodal financial data is to extract
nformative representations from it, which can be achieved by leverag-
ng the power of deep learning. The key to the success of deep learning
n this context is its ability to automatically learn high-quality represen-
ations from large-scale data. 

Representation learning is the process of transforming raw data into
 more appropriate form for machine learning. It can extract key pat-
erns from the data and play an important role in machine learning ap-
lications in which performance may highly depend on the representa-
ion. 

For example, as a milestone in computer vision, a convolutional neu-
al network (CNN) learns convolution kernels automatically from data
nd outperforms conventional manual feature extraction methods. For
raph data, graph neural networks [15,16] , which incorporate the graph
tructure into the learning process, can learn high-quality representa-
ions for downstream tasks. With the help of pre-training frameworks,
ultimedia data can be jointly exploited to learn representations in a
nified model. Such a unified model trained on multimodal data can
rovide richer information compared with standalone models. 7 8 9 10 

1 12 13 

.2. User profiling and behavior modeling 

In a large system with multiple interacting agents, despite significant
andomness and unpredictability of each individual’s behavior, group
ehavior has a strong regularity. This provides a framework that can
e used to examine group behaviors in such systems. Furthermore, user
rofiling, which aims to understand and analyze user behavior, can be
ighly useful for discovering valuable information. 

User behavior modeling Traditional methods rely on classic Markov
odels to simulate user behaviors. Recent works have focused on the

dea of learning compressed representations (following the encoder-

ecoder method) that can be used to reconstruct raw sequences. In re-
urrent neural networks (RNNs), recurrent structures such as long short-
erm memory (LSTM) are used to model sequences. In addition to the re-
urrent architecture, convolution and attention architectures have been
ntroduced [17] . 
8 https://www.kaggle.com/ellipticco/elliptic-data-set 
9 https://www.kaggle.com/mczielinski/bitcoin-historical-data 

10 https://www.kaggle.com/ealaxi/paysim1 
11 https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us- 
tocks-etfs 
12 http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata 
13 https://www.phishtank.com/index.php and https://www.alexa.com/topsites 
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Table 1 

Public Datasets . 

Dataset Network Type Data Size Description 

Czech Financial Data 7 Bank transactions 1.05M An anonymous transferring data of Czech bank released for Discovery Challenge. 
Elliptic Data 8 Bitcoin 234 K A transaction graph collected from the Bitcoin blockchain. 
Bitcoin Historical Data 9 Bitcoin 4.86M Bitcoin data at 1-min intervals from select exchanges, Jan 2012 to March 2021. 
Synthetic financial data for fraud detection 10 Mobile money transactions 6.36M Synthetic dataset generated by the PaySim mobile money simulator. 
Huge Stock Market Data 11 Stocks and ETFs 17.5M Historical daily prices and volumes of all U.S. stocks and ETFs. 
Credit-card Data 12 Credit card transactions 284 K Anonymized credit card transactions labeled as fraudulent or genuine. 
Phishing website Data 13 Uniform resource locator (URL) 3.52 K 2119 phishing sites from PhishTank and 1407 legitimate sites from Alexa Database . 

Table 2 

Summarization of research works on various applications ∗ . 

Paper Theme Subtheme Year Traditional ML DL Methods 

Ha [39] Credit risk 2016 ✓ Neural network 
Moradi [40] Credit risk 2019 ✓ Adaptive fuzzy network 
Zhang [41] Credit risk 2020 ✓ GBDT, Neural Network 
Yang [42] Credit risk 2018 ✓ Time-aware LSTM 

Tavana [43] Liquidity risk 2018 ✓ ANN-BN 
Guijarro [44] Liquidity risk 2019 ✓ linear regression 
Sahin [45] Askari [46] FCC risk Card fraud 2013,17 ✓ Decision Tree 
Mubalaik [47] FCC risk Card fraud 2017 ✓ MLP 
Malini [48] FCC risk Card fraud 2017 ✓ KNN 
Martínez [49] FCC risk MM 2016 reinforcement learning 
Shi [50] FCC risk MM 2019 graph mining 
Humpherys [51] FCC risk FSF 2011 ✓ naive Bayes, decision tree 
Li [52] Sun [53] FCC risk AML 2020,21 graph mining 
Shi [54] FCC risk AML 2019 sequence mining 
Nyman [55] Systemic risk 2021 ✓ clustering 
Zhou [56] Systemic risk 2020 ✓ CNN, BiGRU 
Catullo [57] Systemic risk 2015 ✓ reinforcement learning 
Yu [58] Systemic risk 2020 ✓ Network model, GBDT 
Ahelegbey [59] Systemic risk 2021 ✓ VAR 
Bianchi [60] Systemic risk 2019 ✓ MCMC 
O’Halloran [61] Systemic risk 2019 ✓ Markov model 

∗ ML: machine learning; DL: deep learning; FCC risk: financial crime compliance risk; FSF: financial statement fraud; 
AML: anti-money laundering; MM: Market manipulation. 
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i Fig. 1. PALE: Identifying anchor links across networks [18] . 
User identity identification One single user may have multiple accounts
n different networks. Thus, identifying cross-platform users is important
or user profiling and financial risk management. Two main types of ap-
roaches for this are supervised methods and unsupervised methods.
ompared with the former, unsupervised methods are less susceptible
o subtle changes in network structure and are more robust. For exam-
le, PALE [18] learns robust embeddings from network structures in an
nsupervised manner and then finds matching pairs according to nearby
eighbors (see Fig. 1 ). 

.3. Knowledge graph 

As mentioned in Section 2.2 , knowledge graphs represent rich infor-
ation of entities and relations among them, making them highly useful

or financial applications. Knowledge graph (KG) is a graph-structured
ata model to represent knowledge, and knowledge graph reasoning
i.e., inferring missing facts in KG) is a basic task. Recently, translation-
ased models have been widely researched. These models often learn
mbeddings by translating a head entity to a tail entity through this
elation. For example, TransE [19] , a representative translation-based
odel, maps the entities and relations into the same vector space and

orces the added embedding 𝐡 + 𝐫 of a head entity ℎ and a relation 𝑟 that
s close to the embedding of the tail entity 𝐭 , 𝐭 . SENN [20] integrates the
rediction tasks of head entities, relations, and tail entities into a neural
etwork with shared embeddings of entities and relations. 

KGs can be also used to present sequences of events. When only con-
idering the temporal relation between events, event graphs are often
rganized into a sequence of event subgraphs. Existing models first en-
ode the subgraph in a time stamp and then model the temporal order
nformation via a sequence model. 
598 
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Fig. 2. Schematic of a multi-slice trading network . Three slices, each corre- 
sponding to one daily trading network, are shown. The same trader on different 
trading days is connected by inter-slice connections. Solid lines represent intra- 
slice connections, and dashed lines represent inter-slice connections [24] . 
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.4. NLP technologies 

In financial markets, text data can provide rich information for ana-
yzing risks. Thus, NLP, including entity extraction, sentiments analysis,
achine translation, and representation learning (language model), is

n extremely important set of technologies for understanding and min-
ng financial information and knowledge. Furthermore, the success of
ultilingual machine translation technologies [17] based on big corpora
as made the open financial market almost seamless across countries. 

Pre-trained language model In recent years, large-scale pre-trained lan-
uage models based on the transformer [17] architecture have made
utstanding breakthroughs in NLP tasks, such as BERT [21] and GPT-
 [22] . They provide a stronger tool for information acquisition from
exts in financial analysis, such as sentiment analysis of financial texts
23] . Moreover, GPT-3 exhibits great potential for natural language gen-
ration (NLG). Trained on large-scale corpora collected from the web,
PT-3 has shown impressive power to generate high-quality texts that
re indistinguishable from human-written texts. 

.5. Graph and Network analysis 

In modern finance, considering Not only individual entities and their
ttributes but also The relationships between them is important. Some
ata are already present in networks such as investment and transaction
etworks, whereas other data are implicitly and heterogeneously cor-
elated, for example, data regarding co-founders, business, investment
ehaviors, and stock exchanges. In this review, we follow the conven-
ion that a graph is a mathematical representation of vertices (entities)
nd their edges (relationships) and use it interchangeably with the term
etwork, which refers to specific instantiations of a graph. 

.5.1. Structure analysis 

Networks are randomized and disordered at the microscopic level
nd often appear regular and ordered at the macroscopic level. This
roperty has attracted researchers to explore and analyze the network
esostructure (i.e., subgraph) that connects micro and macro levels. For

xample, HoloScope [25] detects fraudulent entities and subgraphs in
etworks based on topology and spikes. At present, network mesostruc-
ure analysis is mainly focused on community structure. Motifs, known
s small frequent subgraph patterns in networks, are also important for
nderstanding the structure of large networks [26,27] . Fig. 2 proposes
ntegrating all daily trading networks for stock into a multi-slice trading
etwork( [24] ). Communities and subgraphs Communities exist in a large
umber of real-world complex networks. Generally, community struc-
599 
ure refers to groups of nodes that are “tightly connected internally and
parsely connected externally ”. 

In the past, uniform metrics for the community are lacking. Sub-
equently, Newman proposed modularity [28] based on an intuitive
nderstanding of the community structure which is characterized as a
igh density of connections within a community and relatively sparse
onnections between different communities. Because modularity pro-
ides a good formal definition of community partitioning based on edge
ensity, many methods for community discovery based on modularity
ptimization have been proposed. Its flexibility also allows researchers
o easily extend it to fit different kinds of networks, such as bipartite
raphs. It is noteworthy that spectral graph theory , which has played an
mportant role in modularity optimization, emerged as powerful tools
or application-driven tasks beyond community discovery [29] . 

Evolution of communities The evolution of community structures is an-
ther important issue. Evolution is a fundamental characteristic of real-
orld networks and reveals interactions between network structures.
alla et al. studied community evolution based on their proposed com-
unity discovery method using complete subgraph percolation [30] .
hey concluded that the stability of small communities is a prerequisite
o ensure their existence, whereas the dynamics of large communities
s the basis for their existence. The relationship between community
tructure and network dynamics is closely related to the evolution of
ommunities. The mainstream research method involves learning net-
ork dynamics properties through synchronization and diffusion pro-

esses. [31] studied the relationship between the diffusion process and
ommunity structures and pointed out that the local equilibrium states
merging from the diffusion process can reflect the community struc-
ure of networks. Accordingly, they proposed network conductivity to
escribe the relationship between network community and local equi-
ibrium states and provided a community discovery method based on
etwork conductivity optimization, with significant performance com-
ared with modularity optimization methods. 

.5.2. Graph neural networks 

Owing to the powerful representation capability of graphs,
raph representation learning has attracted widespread research
ttention. Furthermore, in recent years, graph neural networks
GNNs) [15,16] have achieved great success in graph representation
earning and subsequent tasks, such as node classification and link pre-
iction. GNNs follow a neighborhood aggregation scheme, where the
epresentation of a node is obtained by recursively aggregating and
ransforming the representations of its neighboring nodes. The success
f GNNs can be attributed to their high expressive power of learning rep-
esentations of nodes and graphs. Existing methods aim to design neural
etworks for graph data, for example, CNN on graphs, self-attention on
raphs, and RNN on graphs. For example, GWNN [32] implements graph
onvolution operator via graph wavelet transform. 

GNNs have achieved great improvement in financial risk detection.
GN [33] constructs a heterogeneous network of account devices and
stablishes a GCN to identify fake accounts. Furthermore, cash-out de-
ection was investigated in [34] . The authors aggregated neighbor fea-
ures based on meta-paths to obtain expressions and learned attention
rom each meta-path to obtain node representations to classify nodes.
RC [35] characterizes multiple types of relationships via the self-
ttention mechanism and employs a conditional random field to detect
oan fraud. 

.5.3. Large-scale graph mining 

With the explosive growth in data volume, the number of real-world
etworks is increasing. This poses great challenges to graph mining,
nalysis, and processing. Thus, multiple large-scale graph mining meth-
ds have been proposed. For example, SpecGreedy [36] efficiently de-
ects multiple types of suspicous dense subgraphs in large networks
ased on spectral graph theory, which is useful for detecting financial
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nomalies, such as subgraphs that suddenly become dense in a transac-
ion network. 

In contrast, the graph summarization technique, which reduces the
nput graph to a much smaller summary graph, can help handle large-
cale graphs. For example, SWeG [37] finds a compact summary graph
ith edge corrections and boosted graph queries. DPGS [38] adopts the

onfiguration model as a null model in graph summarization and saves
oth memory and time for GNN training, which facilitates graph mining
asks on large-scale financial networks. 

. Applications 

We now review studies that solve specific financial risks by utilizing
ig data and emerging methods. The works are summarized in Table 2 .

.1. Credit risk 

Credit risk assessment is the basis and key to risk management. While
raditional financial credit information often contains only strong finan-
ial attributes (e.g., credit card, foreign exchange, private lending, and
ther financial transaction data), credit evaluation based on big data
lgorithms comprehensively considers financial data, government pub-
ic service data, life, and social data, among others. Ha et al. [39] con-
tructed a credit scoring model based on deep learning and feature selec-
ion and evaluated applicants’ credit ratings according to the input char-
cteristics of applicants. The test showed that deep learning is an effec-
ive method for managing high-dimensional credit feature data. Moradi
nd Rafiei [40] proposed an adaptive network-based fuzzy inference
ystem that accommodates both customer profile data and fluctuating
olitico-economic factors to assess credit risk. The dynamic system could
roduce a table of bad customers on a monthly basis, and the results
ere highly compatible with real-life situations. Zhang et al. [41] de-

igned an online integrated credit scoring model that can be updated
n time based on an innovative learning framework called DeepGBM,
hich integrates the advantages of the gradient boosting decision tree

GBDT) and neural network to handle both categorical and categorical
umerical tabular features [62] . As an example of non-traditional data,
42] built a DeepCredit model mainly based on time-aware LSTM, us-
ng a complete user clickstream dataset from a P2P lending platform
hat recorded more than 4 million financial activities of 10 thousand
sers. The model predicted both individual delinquencies and defaults
ith high accuracy. 

.2. Liquidity risk 

The provision of liquidity is key to all theories of financial interme-
iation [44] . In traditional models, liquidity risk is measured by consid-
ring changes in some indicators over a specific time horizon for com-
arison [63] . However, plurality, multiplicity, and diversity of accounts
ake it quite difficult and time-consuming to calculate cash flows, and

hus these data are challenging to obtain in a short period of time. 
Nowadays, big data algorithms can be used to better evaluate liq-

idity risk and analyze the key factors and their interconnections. Ta-
ana et al. [43] used neural networks to analyze and evaluate liquidity
isk and key factors. The proposed ANN-BN two-stage model primar-
ly aimed to facilitate the systematic analysis of bank-specific measures
ased on balance sheet ratios and was proven to be flexible enough to
e applied to any loan-based scenario. Guijarro et al. [44] analyzed the
mpact of social media on financial market liquidity by performing a re-
ression analysis with the S&P500 index after scoring it based on Twitter
ontent sentiment. The results showed that after adding a two-day mov-
ng average volume, investor sentiment is significantly and positively
orrelated with the effective spread of liquidity. 
600 
.3. Volatility risk 

Volatility risk in financial markets is the likelihood of fluctuations in
ortfolios’ price under the effect of the changes of certain risk factors.
urrently, one of the principal measurements to quantify financial risk

s value at risk (VaR), in which the prediction of market volatility plays
 crucial role. As price return is the key to understanding and model-
ng market volatility, research on volatility risk mainly focuses on price
eturns, where sequential data are common and widely used. In previ-
us studies, researchers have found that the distribution of price returns
isplays a fat tail ( Fig. 3 ) [64] . The price return does not have linear au-
ocorrelation, whereas the absolute value of the price return displays a
ong-range memory [65] . 

In the big data era, the traditional analysis methods for sequential
ata generally fall into three categories: historical simulation, analyti-
al method, and Monte Carlo simulation; however, these methods of-
en fail to produce accurate results. Conversely, big data algorithms can
vercome this difficulty. By employing the LSTM network, Fischer and
rauss [66] achieved a better prediction of the directional movements

or the S&P 500 stocks over a long time span, compared with logistic re-
ression, random forest, and even standard deep neural networks. They
urther showed that the fluctuation of the portfolio guided by LSTM net-
orks due to common risk factors was significantly reduced. 

.4. Market manipulation 

Financial markets provide a platform for companies to raise capital
y allowing investors to trade stocks, and under normal circumstances,
he prices of financial products reflect common judgments about the
alue of companies. However, market prices can be manipulated by
isinformation and fraudulent trading, affecting investor information

nd disrupting the market to the detriment of financial market devel-
pment. Martínez et al. [49] used a reinforcement learning framework
ithin the full and partial observability of Markov decision processes
nd analyzed the underlying behavior of the perpetrators by finding the
auses of what encourages these traders to perform fraudulent activi-
ies. In addition to machine learning methods, some network analysis
ethods have been applied to the detection of market manipulation.

ome studies have attempted to detect trading-based manipulation in
he Chinese stock market by analyzing trading networks [67] , and the
anipulated stocks were effectively distinguished by a degree-strength

orrelation approach [68] . Furthermore, by constructing a multi-slice
rading network [24] , they successfully identified abnormal traders in
he stock market. In addition, they analyzed the clique of the trading
etwork to detect colluded stock manipulation [50] . 

.5. Systemic financial risk 

The different types of risks discussed previously could trigger a col-
apse in a certain industry or economy. Therefore, appropriate risk man-
gement is required to treat systemic risk, especially from a regulatory
erspective. Traditional systemic risk management has mainly relied on
nstitutional micro-indicators and macro-economic indicators, such as
sset adequacy, asset quality, and liquidity, laying the foundation for
isk monitoring methods, including weighted average or structural mod-
ls. However, limited by the update mechanism or intrinsic property,
raditional indicators often suffer from hysteresis, low frequency, and
ther disadvantages, and incorporating alternative data could alleviate
he problem. Nyman et al. [55] analyzed financial market text-based
ata to assess the effect of emotional content on the development of
 financial system, revealing the formation of exuberance before the
lobal financial crisis as well as the subsequent collapse. 

With the development of big data algorithms with high computa-
ional power, a series of new data-driven methods have emerged. Non-
inear methods such as an SVM and neural networks provide higher
rediction accuracy for systemic risk as a nonlinear problem. Zhou



X. Cheng, S. Liu, X. Sun et al. Fundamental Research 1 (2021) 595–606 

Fig. 3. Fat-tail of the price return distribution . (a) The top pane is an example of the normalized price return on the OKCoin platform from 14:04 on March 3, 
2017, to 22:45 on March 4, 2017, and the bottom pane is the noise signal sampled from a Gaussian distribution. (b) The distribution of normalized price returns in 
different Bitcoin platforms compared with Gaussian distribution when Δ𝑡 = 2 min. c , Kurtosis 𝜅 versus Δ𝑡 in different Bitcoin platforms [50] . 
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Fig. 4. Global losses from payment fraud have tripled from $9.84 Billion 

in 2011 to $32.39 in 2020 . Payment fraud is expected to continue increasing 
and is projected to cost $ 40.62 billion in 2027. The data after 2020 are the 
predicted values 14 . 
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t al. [56] proposed a hybrid deep learning model based on a CNN
nd BiGRU to predict systemic financial risk, achieving superior per-
ormance in feature learning. 

After the 2008 financial crisis, a large number of dynamic mod-
ls based on emerging economic and financial theories described the
volution of systemic risk. Catullo et al. [57] reproduced the macroe-
onomic dynamics generated from the interaction between heteroge-
eous banks and enterprises in the endogenous credit network, based
n which the authors defined the early warning indicators of crises. Yu
t al. [58] simulated an interbank network using a complex network
pproach to predict systemic risk contagion and provided a method to
elect the optimal management policy for handling systemic risk. Addi-
ionally, researchers in other major branches have adopted data-driven
tatistical learning methods to build risk evolution models. Systemic risk
ndicators and macroeconomic variables are used as state variables, and
ector auto-regression (VAR) and Markov chain are used as a more gen-
ral form of VAR to obtain a state transition matrix based on histori-
al data. Ahelegbey et al. [59] proposed a network VAR model to as-
ess the financial impact of the COVID-19 pandemic. Recently, many
I approaches have been applied to systemic risk evolution research.
’Halloran and Nowaczyk [61] designed a systemic risk engine based
n the Open Source Risk Engine and incorporated various risk metrics;
hey also adapted a simulation technology to assess the impact of regu-
ations on the financial system in general. 

. Financial crime compliance risk 

Financial crime compliance risk relates to losses that may arise when
 company or institution fails to comply with the laws and regulations
elevant to financial crimes in their respective jurisdictions. Typical fi-
ancial crimes include identity theft, market manipulation, money laun-
ering, and financial statement fraud. In this section, we will introduce
he emerging big data approaches for the management of financial crime
ompliance risk. 14 

.1. Identity theft 

Identity theft refers to criminals using someone else’s identity and
ther relevant information in unauthorized ways. It often results in im-
ediate financial loss, and victims may suffer from a series of credit

s well as other problems. To reduce the risk, Wang et al. [69] used a
robabilistic generative model to detect identity theft in mobile social
etworks. Such crime conducted through the internet are called “phish-
ng. ” Rao et al. [70] detected phishing websites by employing a ran-
om forest classifier based on heuristic features extracted from the URL,
ource codes, and third-party services. In [71] , Benavides et al. provided
14 https://nilsonreport.com/mention/1313/1link 
w

601 
 detailed description of deep learning approaches for tackling phishing
ttacks. 

One form of identity theft is credit card fraud, which typically only
ffects one or more of the victim’s open credit card accounts 15 . As shown
n Fig. 4 , fraudulent transactions via credit cards could be as high as $
1 billion by 2027. Many approaches have been designed for such an
nti-fraud urgency. Malini and Pushpa [48] adopted the KNN algorithm
nd outlier detection methods, combined with oversampling and PCA
echniques, to optimize the fraud detection rate for bank credit card
raud detection. Askari and Hussain [46] proposed a FuzzITree algo-
ithm based on an ID3 decision tree using fuzzy logic to discover fraud-
lent transactions. 

.2. Financial statement fraud & insurance fraud 

Financial statement fraud Financial statement fraud refers to deliber-
te misrepresentation of the financial condition of an enterprise accom-
lished by intentional misstatement or omission of amounts or disclo-
ures in financial statements 16 . Losses from financial statement fraud
re often quite large and sometimes even catastrophic to institutions.
herefore, financial statement fraud has been a serious concern for au-
itors, investors, and regulators. Various big data algorithms have been
eveloped to address this risk. A common workflow consists of feature
election from diverse data (including report text and financial indi-
ators) and classification for fraud prediction. After employing a wide
15 https://creditcards.usnews.com/articles/credit-fraud-vs-identity-theft- 
hats-the-difference 

16 https://www.acfe.com/article.aspx?id = 4294967876 

https://nilsonreport.com/mention/1313/1link
https://creditcards.usnews.com/articles/credit-fraud-vs-identity-theft-whats-the-difference
https://www.acfe.com/article.aspx?id=4294967876
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Fig. 5. Example of money laundering transfers in a bank, creating a dense 

tripartite subgraph [78] . Edge color and node size indicate the amount of 
money transferred. 

m  

t  

d  

d  

u  

o  

t  

m  

t  

t

5

 

p  

e  

p  

w  

t
 

t  

o  

p  

e  

t  

R  

d

5

 

a  

e  

t  

M  

r
 

c  

t  

e  

I  

p  
ange of big data algorithms for both feature selection and classification
o detect fraud, Hajek and Henriques [72] found that ensemble meth-
ds perform best for fraudulent companies and Bayesian belief networks
BBN) for non-fraudulent companies. With similar considerations, Yao
t al. [73] compared several hybrid methods and found the best com-
ination of XGBoost and random forest for statement fraud detection.
ided by deep learning, Craja et al. [74] achieved improved results
ompared to many current approaches by adopting a hierarchical at-
ention network (HAN) for feature extraction to better reflect document
tructures and concentrate on both the content and context of the text.
75] used multiple data mining techniques to identify companies that
esort to financial statement frauds. In addition, [76] evaluated multiple
ethods to predict financial statement frauds. 

Insurance fraud Insurance fraud is a deliberate deception perpetrated
gainst or by an insurance company or agent for financial gain 17 . Ac-
ording to the FBI, non-health insurance fraud costs more than $40 bil-
ion per year as estimated and causes more premium burdens on the U.S.
amily 18 . With the burst of the COVID-19 pandemic, the number of po-
ential fraud claims is believed to double 19 . However, traditional meth-
ds usually fail to handle textual information in claims, which could
rovide a valuable reference for insurance fraud detection. By lever-
ging deep learning, Wang and Xu [77] combined traditional numeric
eatures with text features extracted by LDA for neural network training
o detect automobile insurance fraud, and the results outperform widely
sed models such as SVM and random forest. 

.3. Anti-money laundering 

Money laundering is the behavior of concealing the source of money
chieved through illegitimate activities. According to the United Na-
ions The Office on Drug and Crime, the estimated amount of money
aundered globally in one year is 2–5% of global GDP or $800 billion
 $2 trillion in current US dollars 20 . Therefore, anti-money laundering
AML) is of critical significance to national financial stability. 

The most classic approach used in the bank for AML is rule-based
lassification. By using bid/ask orders, price returns could provide an
nnovative and effective method to detect abnormity in Bitcoin plat-
orms [54] . However, these rule-based algorithms rely heavily on ex-
ert knowledge, are easy to evade by fraudsters, and cannot be used to
iscover new types of money laundering behaviors. 

Machine learning algorithms are also applied for detecting money
aundering activities, which can be effectively interpolated on new sce-
arios without the constraints of fixed rules. SVM was previously ap-
lied to process large data sizes and achieved high accuracy. Stavarache
t al. [79] proposed a deep learning–based method trained for an anti-
oney laundering tasks using customer-to-customer relations. However,

hese algorithms detect money laundering activities in supervised or
emi-supervised manners, suffering from imbalanced classes and lack of
daptability. In addition, clustering-based methods have been applied
o the detection of money laundering activities by grouping suspicious
ransactions into clusters. However, these methods do not consider the
nteraction between accounts, resulting in a high false-positive rate of
etection. 

Graphs and networks are powerful representations for analyzing the
nner-dependency among suspicious accounts involved in money laun-
ering. Fig. 5 shows a real example of money laundering transfers in a
ank, containing a two-step flow from source to middle to destination
ccounts, where three types of accounts are denoted by 𝐴, 𝑀, 𝐶 respec-
ively. Colladon and Remondi [80] utilized social network analysis to
eveal the underlying roles and organization structures. However, these
17 https://www.iii.org/article/background-on-insurance-fraud 
18 https://www.fbi.gov/stats-services/publications/insurance-fraud 
19 https://knowledge.friss.com/en-us/2020-insurance-fraud-report 
20 https://www.unodc.org/unodc/en/money-laundering/overview.html 
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ethods do not perform flow tracking or provide theoretical guaran-
ees. A flow-based scalable approach FlowScope [78] was proposed for
etecting the complete transfer flow of money from the source to the
estination, which had a theoretical bound. It modeled the transactions
sing a multipartite graph and designed a novel anomaly metric to be
ptimized. The extensive experiments provided in this paper showed
hat Flowscope is effective and robust in detecting different adversarial
oney laundering behaviors. On this basis, Sun et al. [53] modeled the

ransfer flow as two coupled tensors, considering multiple attributes of
ransactions(e.g., time). 

.4. Trafficking & sanctions 

Trafficking Anti-trafficking policies often play an important role in
olicymaking. In recent years, various technologies have been consid-
red to combat trafficking. Data such as financial transactions, mobile
hone calls, and text messages contribute significantly to anti-trafficking
ork. Musto [81] explored the possibility of using big data to make anti-

rafficking more effective. 
Sanctions The retrogression of globalization and the intensification of

he geopolitical struggle lead to occasional economic sanctions placed
ver countries. For example, sanctions on Iran and Russia have made
eople begin to evaluate the subsequent loss using algorithms. Tregub
t al. [82] used the OLS algorithm to estimate the economic loss due
o sanctions imposed by the European Union on Russian Federation and
ussian counter-sanctions. Furthermore, sanctions can play a role in pre-
icting bankruptcy [83] . 

.5. Anti-bribery and corruption (ABC) 

Corruption is the abuse of public power motivated by personal gain,
n act that diverts tax revenues from national development. It not only
rodes trust in government and institutions but also reduces the effec-
iveness and fairness of public policies. According to the International
onetary Fund (IMF), approximately $ 1 trillion in global government

evenues are lost due to corruption each year 21 . 
Advances in information technology have made it possible to use ma-

hine learning methods to prevent and detect corruption. In some coun-
ries, relevant techniques were already deployed to fight against gov-
rnment corruption. For example, in the UK, Exiger and Transparency
nternational (TI) attempted to identify corruption risks by analyzing
ublic records. IBM has also been working with the Kenyan govern-
ent to identify the key drivers of bribery through algorithms. In 2020,
icrosoft announced the launch of its anti-corruption technology and

olutions (ACTS), which will employ technologies such as cloud com-
21 https://www.oxfordinsights.com/ai-for-anti-corruption 

https://www.iii.org/article/background-on-insurance-fraud
https://www.fbi.gov/stats-services/publications/insurance-fraud
https://knowledge.friss.com/en-us/2020-insurance-fraud-report
https://www.unodc.org/unodc/en/money-laundering/overview.html
https://www.oxfordinsights.com/ai-for-anti-corruption
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uting, AI, and machine learning to detect and deter corruption in the
oming decades 22 . 

. Future directions 

We summarize several important research directions, where open
roblems in a wide range of domains, in addition to finance, can be
ritical challenges facing the combat with financial risks in the big data
ra. 

.1. Deepfake techniques and detection 

Deep learning has achieved great success in the field of NLP and com-
uter vision. However, GPT-3’s power to generate high-quality text can
e used to produce fake news or opinions. Deepfake techniques based
n deep learning have been applied to create fake images and synthesize
ake videos or speech [86,87] . These techniques, trained on large im-
ges and video datasets, can produce fake news and political rumors by
ampering or replacing the face information of the original videos and
ynthesizing fake speeches. Financial fraud has been successfully carried
ut using the deepfake technique [88] . Meanwhile, public opinion can
e swapped by fake news and videos. When not adequately responded
o, this can impact companies’ reputation, influence consumers’ behav-
ors, and even affect stock prices, eventually endangering the entire fi-
ancial market. However, detecting and identifying fakes remains an
pen problem. 

.2. Adversarial attacks 

Researchers have found that deep neural networks can be eas-
ly fooled by the so-called “adversarial samples, ” which are obtained
y adding imperceptible-to-human perturbations to the original sam-
les [89,90] . Such “adversarial attack ” techniques evade detections and
ose potential threats to the applicants, especially in the financial field,
hich can result in highly critical consequences. For example, in credit

coring systems, fraudsters can fake a friendship connection with others
o evade fraud detection models [91] . 

In recent years, researchers are focused on designing defense meth-
ds against adversarial attacks [84,85,92] . A provably robust neural
etwork [84] was proposed for node classification via low-pass mes-
age passing. It is theoretically upper-bounded under adversarial at-
acks, with an easy-to-plugin module for GNNs, which is as robust as
inear attack budgets, and as accurate as neural networks. Fig. 6 a shows
hat guarded by the low-pass message passing mechanism, Node 1’s em-
edding only has a slight shift, whereas the embedding from the other
aseline shifts significantly. Certified defense [85] provided the worst-
ase performance bound for a given attack, and adversarial immuniza-
ion was proposed to improve the certifiable robustness against any ad-
issible adversarial attack, as shown in Fig. 6 b. 

These defense methods can be used to address potential crime
hreats, such as misleading the judgment of investments and recom-
endations by deep learning models. However, from the application
erspective, no one has yet designed a powerful defense algorithm that
an resist a wide variety of adversarial example attack algorithms. 

.3. Causality and interpretability 

Currently, big data algorithms applied to financial risks are mainly
ased on statistics that emphasize the correlation of factors. Such mod-
ls would be vulnerable to environmental changes if they were built
pon correlations rather than underlying causal relationships. Modeling
22 https://venturebeat.com/2020/12/09/microsoft-launches-effort-to-fight- 
orruption-with-ai-and-other-emerging-technologies/ 
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ausal relationships is valuable for making financial predictions and de-
isions, which can improve prediction robustness, provide interpretable
esults, and enable counterfactual inference. 

Traditional studies on causality require randomized controlled trials
RCTs) to determine the exact causal relationship. However, big data
rings us another approach, that is, mining causal relationships inside
bservational data. Following the methodology of the structured causal
odel (SCM) [93] , causal relationships are represented by a directed

cyclic graph (DAG), where nodes are factors and edges are direct cause-
ffect relationships. 

Causal discovery is a promising technique for mining causal rela-
ionships in financial data. Many effective methods for causal discovery
xist for stationary data. Nevertheless, future challenges for modeling
ausal relationships in finance mainly lie in the issues of hidden fac-
ors. Hidden factors are critical, but unobservable, factors and may act
s confounders of other observable factors, leading to spurious correla-
ions. 

.4. Privacy 

As mentioned previously, big data can facilitate many financial ap-
lications. However, there still remain privacy concerns, especially in
he finance field. Data used in financial applications often contain sen-
itive information about users, while companies tend to keep data to
hemselves. Therefore, companies that collect users’ locations through
eather forecast apps could have a better ability to predict users’ cred-

tworthiness than traditional credit bureaus [94] . 
In addition to normalizing the use of users’ shared information,

lobal coordination of data-sharing from different countries or sectors is
rucial to identify risks across individual borders. However, such cross-
order data-sharing is always challenging due to the complex data-
haring policies of different countries or varying interests and regula-
ors within an individual country. This results in greater fragmentation
f the global digital economy and obstructs the combating of financial
isks 23 . 

Therefore, a question can be raised: How can we use data related to
sers’ sensitive information properly and safely and at the same time
liminate the fragmentation of economic data? Algorithms such as dif-
erential privacy [95] , which has been listed as one of “10 breakthrough
echnologies 2020 ” by MIT Technology Review 

24 , is one of the key di-
ections to combat financial risks in the future. 

.5. Multi-agent simulation 

Most macro- and micro-studies on financial problems focus on in-
onsistent topics, with rare connections between them. Data from in-
ividual sensors provide a micro-view of financial behaviors, whereas
tatistics provide a macro-view. Recently, the simulation of multi-agent
einforcement learning has shown surprising results, for example, Alp-
aZero, as a single agent, played with another copy as an opponent at
he same time, became a master of Go [96] , and succeeded in playing a
ulti-agent game Dota [97] . 

The agent-based simulation exhibits the ability to find a better so-
ution or forecasting than humans, given the proper environments and
wards. Therefore, close-to-real environments of the real-world econ-
my, multi-agent simulations, and learning can hopefully be a system-
tic solution to deeply understand our physical economy system and ad-
ress emerging risks within it. Although the concept of “digital twins ”
as initiated for physical model simulation of spacecraft, it has become
23 https://www.imf.org/external/pubs/ft/fandd/2021/03/how-to-build-a- 
etter-data-economy-carriere.htm 

24 https://www.technologyreview.com/10-breakthrough-technologies/2020/ 

https://venturebeat.com/2020/12/09/microsoft-launches-effort-to-fight-corruption-with-ai-and-other-emerging-technologies/
https://www.imf.org/external/pubs/ft/fandd/2021/03/how-to-build-a-better-data-economy-carriere.htm
https://www.technologyreview.com/10-breakthrough-technologies/2020/
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Fig. 6. (a) Embeddings (i.e. representations) of nodes from two classes . Guarded by low-pass “message passing, ” node 1’s embedding is slightly shifted under 
the attack compared with the unguarded method. (b) Two classes of nodes with different colors. Two vertical bars beside nodes represent node’s robustness before 
and after immunization. The node is certified as robust (red) when its robustness is > 0; otherwise, it is non-robust (pink). Purple circle indicates the node that 
becomes robust through immunization. The red edges are immune edges. 
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n emerging topic in the digital economy 25 ; however, the complexity of
he real world makes the digital twin far from being realized. 

. Conclusion 

In this paper, we presented a perspective review on the studies that
ocus on addressing emerging financial risks in the big data era, which
as brought us challenges in terms of utilizing big and multimodal data;
nalyzing with long-range and heterogeneous dependent, dynamic, and
eal-time nature of data; and the adversary of financial fraud. We pro-
osed a reviewing framework to classify the related works: 

- what data to utilize, 
- how to empower big data with the emerging tools that can analyze

or learn from, and 
- highlighting how successful the research works have been in various

applications. 

Finally, in addition to discussing methods that can address privacy
ssues, we list what we should do in the future in terms of handling
isks emanating from deepfake techniques, adversarial attacks on deep
odels, cause-effect methods, and simulation of physical world, which

re still open problems and gaining momentum. 
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