DPGS: Degree-Preserving Graph Summarization (Appendix)
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A Analysis of ALg(i,7)
Assumed that the input graphs are simple and undirected, the error description length L(D | M) is
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Since the second term only depends on the input graph, we only consider the first term in the following.
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Suppose the current supernode set is S. After merging supernodes S; and S; into a new supernode Sy, we
get a new supernode set S’ = S\ {S;, S;} U{Sk}. The connectivity of Sy, is the aggregation of S; and S;, that is,
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Now we expand the ALg (i, j) as follow (we define f(z) = xlnz(x > 0) and f(0) = 0 for simplicity):
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Note that if .S; is not the common neighbor of supernode S; and S}, it makes no contribution to ALg(4, j). Each

common neighbors makes positive contribution to ALg(i,5) (since f(x +y) > f(z) + f(y) for z,y > 1). Thus,
the more common neighbors supernodes S; and S; have, the more likely the merging cost ALg(4,5) is small.
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B PROOFS
B.1 Proof of Theorem 3.1

Proof. Denote the normalized Laplacian matrix of the original graph and the reconstructed graph as £ and L'.
By [?], the squared error between eigenvalues of £ and L’ are bounded by:
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Denote the normalized i-th row of A and A’ as A(i) and A’(i), then A(i) and A’(i) can be seen as two
distributions. Moreover, with the following inequality [?]:
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Together, we have
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TThe base of logarithm of Inequality (??) is 2, thus the factor In 2 vanished since we change the base from 2 to e.



B.2 Proof of Theorem 3.2

Proof. The key tool is Jensen’s inequality. Suppose f(z) is a convex function, then
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where \; is positive weights.
In the following proof, the inequality is applied on f(z) = —Inz.
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Let’s focused on the part related to ¢ in Equation (?7?), since ¢ and j are symmetric.
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Apply Jensen’s inequality on the last two row
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Apply Jensen’s inequality again
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Similarly, ALg(4,j); > 0. Together, ALg(i,j) > 0.



