
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009 207

Substrate Topological Routing
for High-Density Packages

Shenghua Liu, Student Member, IEEE, Guoqiang Chen, Tom Tong Jing, Member, IEEE,
Lei He, Senior Member, IEEE, Tianpei Zhang, Robi Dutta, and Xian-Long Hong, Fellow, IEEE

Abstract—Off-chip substrate routing for high-density packages
is on the critical path for time to market. Compared with on-chip
routers, existing commercial tools for off-chip routing have lower
routability and often result in a large number of unrouted nets
for manual routing. In this paper, we explain why planar routing
is still required with multiple routing layers for substrate routing
and then propose a flexible via-staggering technique to improve
routability. In addition, we develop an efficient yet effective sub-
strate routing algorithm, applying dynamic pushing to tackle the
net ordering problem and reordering and rerouting to further
reduce wire length and congestion. Compared with an industrial
design tool that leaves 936 nets unrouted for nine industrial designs
with a total of 6100 nets, our algorithm reduces the unrouted
nets to 212, a 4.5-times net number reduction, which translates
to design time reduction.

Index Terms—Integrated circuit (IC) package, routability, sub-
strate, system-in-package, topological routing.

I. INTRODUCTION

AN IC PACKAGE (see Fig. 1) usually uses a ball grid array
(BGA) substrate and wire bonding or flip-chip to connect

a die to the substrate. However, high-density integration inside
the package makes off-chip routing a challenging task. For a
wire-bonding die, the I/O pads of the die are connected to
the bond pads around the cavity through bonding wires. For
a flip-chip die, on-chip redistribution layer routing [1], [2] first
connects the I/O pads to bump pads, and escape routing [3]–[8]
then breaks out bump pads to the boundary of the die at the
escape break points in the buildup or signal layers. Finally,
substrate routing connects escape break points of flip-chip dies

Manuscript received April 18, 2008; revised July 7, 2008. Current version
published January 21, 2009. This work was supported in part by the National
Science Foundation under CAREER Award CCR-0093273 and in part by the
National Natural Science Foundation of China under Grant 60720106003 and
90607001. This paper was recommended by Associate Editor L. Scheffer.

S. Liu and X.-L. Hong are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail: liuch05@
mails.tsinghua.edu.cn; hxl-dcs@tsinghua.edu.cn).

G. Chen and R. Dutta are with Magma Design Automation, Inc., San Jose,
CA 95110 USA (e-mail: gchen@Magma-DA.COM; Robidutta@aol.com).

T. T. Jing was with the Department of Electrical Engineering, University of
California, Los Angeles (UCLA), Los Angeles, CA 90095 USA. He is now
with Synopsys, Inc., Mountain View, CA 94043 USA (e-mail: jingtong_eda@
hotmail.com).

L. He is with the Department of Electrical Engineering, UCLA, Los Angeles,
CA 90095 USA (e-mail: lhe@ee.ucla.edu).

T. Zhang was with the University of Minnesota, Minneapolis, MN, 55455
USA. He is now with Cadence Design Systems, San Jose, CA 95134 USA
(e-mail: dune.ocean@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.2009154

Fig. 1. Example of an IC package.

or bond pads of wire-bonding dies to solder balls (usually in
the bottom layer) of a BGA package substrate.

Substrate routing can be divided into two steps: 1) topolog-
ical routing and 2) detailed routing. While detailed routing is
discussed in [9]–[11], this paper studies topological routing. We
justify why planar routing is still required when multiple rout-
ing layers are available for substrate routing and then propose
a flexible via-staggering technique to improve routability. In
addition, we develop an efficient yet effective substrate routing
algorithm, applying dynamic pushing to tackle the net ordering
problem and reordering and rerouting to further reduce wire
length and congestion. Compared with an industrial design tool
that leaves 936 nets unrouted for nine industrial designs with a
total of 6100 nets, our algorithm reduces the unrouted nets to
212, a 4.5-times net number reduction. The average wire length
reduction by our method is 13.9%.

The rest of this paper is organized as follows: Section II
reviews existing work and formulates a new routing prob-
lem. Section III describes our algorithms in detail. Section IV
presents experimental results, and Section V concludes this
paper.

II. BACKGROUND AND PROBLEM FORMULATION

A. Comparison With the Existing Work

Advanced packaging technology such as system-in-package
needs flexible locations for bond pads and escape break points,
which are called start points of nets in this paper. However,
most existing work in topological routing [12]–[14] assumes
that start points are located side by side with respect to solder
balls. Our routing algorithm to be presented does not suffer
from such location constraints.

Existing substrate routing work [15], [16] does not spec-
ify the destination ball to a start point in substrate routing,

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

208 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 2. End zone and flexible endpoint.

which makes routing easier as there is no constraint on net
ordering. However, printed circuit board designers prefer to
specify solder ball assignment as a design constraint. Our
routing algorithm can deal with the case of specified solder ball
assignment.

When dropping signal vias, the vias need to be staggered
and close to the locations above assigned destination balls. In
substrate routing, which is preferred to be planar (as will be
discussed in Section II-B), nets are finally connected to the
solder balls in the bottom layer by staggered vias, where vias
crossing multiple layers cannot be stacked exactly one on top
of the other due to the required offset, called minimum and
maximum staggered via pitches. The former is determined by
via manufacturing technology. The latter is determined by the
power/ground (P/G) network since the pitch should not impact
the integrity of the P/G plane. Thus, for example, taking a
typical four-two-four package,1 we have the flexibility to decide
where the planar routing ends and the staggered via starts.
We define the zone where the staggered via can start as the
end zone. The end zone includes two circles (see Fig. 2). The
radii of the two circles are d1 and d2, respectively, where
d1 =

∑
i mdi and d2 =

∑
i pdi, with mdi and pdi being the

minimal and maximal staggered via pitches in the layer with
index i, respectively. However, one problematic simplification
by most existing work [12], [14] is to ignore the staggered via
requirement and route to a fixed endpoint. In [13], via assign-
ment was performed ahead of routing, but it is suitable only
for the case of fixed via location with two-layer packages. This
paper performs via staggering so that a net can be connected to
any point in its end zone defined by its solder ball assignment.
Compared with connecting to a fixed point inside the end zone
as in the existing work, it improves routability.

B. Need of Planar Routing

In practice, most wire-bonding packages use only one signal
routing layer due to the cost constraint. It is more common
to have multiple signal routing layers for flip-chip packages.
Although there are multiple routing layers for flip-chip pack-
ages, planar routing is still needed. First, signal via location is
limited within the end zone, which, in turn, is decided by solder
ball assignment and staggered via manufacturing technology.
In other words, the signal vias are allowed in very limited
locations due to manufacturability, leaving space for P/G vias.

1It is a ten-layer package. From top to bottom, there are four buildup
layers, two core layers, and four buildup layers. It can be used as
GND–signal–Vdd–signal–GND–Vdd–signal–GND–signal–Vdd.

Fig. 3. SRG in a buildup layer.

Second, substrate routing often does not allow vertical detours
as such detours introduce extra vias, which may destroy the
signal integrity for high-speed differential signals. Therefore,
multilayer routing formulation such as that for on-chip routing
does not improve routability given the aforementioned two via
constraints.

C. Problem Formulation

In this paper, we assume that escape routing has decided the
location and layer of each start point. The key to the topological
routing problem is single-layer routing, which is performed on
the substrate routing graph (SRG) (see Fig. 3) that maps the
start points, end zones, and dies (as obstacles) on a graph.
The problem of substrate topological routing for package is
formulated as follows.

Formulation 1 (Substrate Topological Routing): Given start
points, solder balls in the bottom layer, netlist defined by solder
ball assignment, and obstacles (including the escape area for
escape routing, prerouted connections, vias, and other obstacles
in the layer), find a topological routing solution connecting
each start point to any point in the end zone for its assigned
solder ball, such that the routed nets inside the obstacles are
planar, satisfying the capacity constraints, and have minimal
wire length.

In our routing algorithm, the SRG in a buildup layer is
further discretized by a set of simple elements such as triangles
or quadrilaterals in two dimensions. There are high-density
and aligned start points, prerouted connections, and all kinds
of possible polygons on the SRG plane. Considering these
practical constraints in this paper, we apply a triangle mesh
by constraint Delaunay triangulation (CDT) [17], which guar-
antees a low computational cost and reasonably well-shaped
elements. Uniformly spreading points, called particles U , are
added in the same way as [18] to the SRG plane for particle-
insertion-based CDT (PCDT) construction. Then, we build a
PCDT graph based on start points, the centers of the end zones
(oz’s), the obstacles, the particles U , and the boundary of the
SRG plane. Thus, the start points and the oz’s become vertices
of triangles. Finally, a dual graph of PCDT is accordingly built,

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

LIU et al.: SUBSTRATE TOPOLOGICAL ROUTING FOR HIGH-DENSITY PACKAGES 209

Fig. 4. Partial PCDT and D-PCDT.

Fig. 5. Algorithm overview.

which we name D-PCDT. An example of PCDT and its dual-
graph D-PCDT are shown in Fig. 4.

III. ALGORITHMS

This section first introduces the algorithm overview and then
discusses the core algorithms in detail, namely, A∗-based2 dy-
namic searching algorithm (ADS∗) and reordering algorithm.

A. Algorithm Overview

The overview of our topological routing algorithm is shown
in Fig. 5. There are two core algorithms: 1) ADS∗ and
2) reordering algorithm. The two algorithms are carried out
layer by layer from top to bottom. Initial routing and rerouting
both employ the ADS∗ algorithm.

As shown in Fig. 5, one net is ripped up at a time, and all
nets are ripped up and rerouted in every iteration, even if some

2A∗ [19] is an efficient graph/tree search algorithm that finds a path from a
given initial node to a given goal node. Compared with other typical algorithms
such as Lee’s maze [20], Moore’s algorithm D [21], and Dijkstra’s algorithm,
the A∗ algorithm is more general and more often has lower time complexity
because of its heuristic estimated cost.

Fig. 6. (a) Cross-twice-detour. (b) Cross-all-edge-detour.

of the nets do not pass through a congested area. All the nets
in substrate routing have exactly two pins. ADS∗ is developed
to route net by net in s2.1.2 in Fig. 5. During the process
of routing, two kinds of unnecessary detours may happen.
Therefore, post optimization is performed in the algorithm
as s2.1.3 in Fig. 5. One is cross-twice-detour, as shown in
Fig. 6(a), where a path passes across one PCDT edge twice and
the two cross points on the edge are neighbors. Then, this detour
can be removed, as shown in Fig. 6(a). The other is cross-all-
edge-detour, as shown in Fig. 6(b), where a path continuously
passes across three edges of the same triangle. Then, it can be
optimized, as shown in Fig. 6(b). Then, in s2.3, before the next
routing iteration, we reorder all the nets for the goal of bent wire
reduction (as will be discussed in Section III-C).

The bound of pushes for a single net ξ is given as a threshold
in each iteration to control pushing. ξ starts at infinity, as shown
in s1.5 in Fig. 5, and is gradually reduced to 0, as shown in
s2.2.2 in Fig. 5.

B. ADS∗

To route net by net, we develop a searching algorithm, called
ADS∗, as shown in Fig. 7. For each two-pin net, ADS∗ finds
the shortest path on the D-PCDT graph (on the PCDT graph,
it is a path from one triangle to another triangle) subject to a
capacity constraint. The capacity Ced of each D-PCDT edge
ed can be calculated as follows. Let e be the edge of PCDT
and e crosses edge ed. If edge e is inside an obstacle, on the
boundary of the obstacle, or on the boundary of the SRG plane,
then Ced = 0. Otherwise, Ced = le, where le is the length of
edge e. The congestion of edge ed is defined as follows.

If Ced = 0, edge ed cannot have any net passing along it.
Hence, ηed = +∞ is defined for path searching. Otherwise

ηed =
∑

i(wi + si)
Ced

(1)

where wi and si, respectively, are the wire width and space of
net i passing through edge e or along edge ed.

The ADS∗ search algorithm is based on the framework
of heap-implemented A∗ algorithm. For the substrate routing
problem, two key technologies, namely, dynamic pushing and
flexible via staggering, are embedded into the procedure and
the evaluation function (i.e., the sum of actual and estimated
costs) of the A∗ algorithm. Then, the evaluation function can
guide the search to push or detour the routed nets blocking the
current net that is searching its path. Instead of finding the least-
cost path from the source node to the destination node in the
A∗ algorithm, ADS∗ aims to find the least-cost path from the
source node to a zone. Once the path on the D-PCDT graph

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 7. Algorithm ADS∗(ψ, ξ).

is found, cross points on the PCDT graph are simultaneously
assigned. We next discuss the key techniques of ADS∗.

To reduce congestion, we use ψ as a congestion threshold to
guide ADS∗. Highly congested edges with higher congestion
values ηed, as discussed earlier in this section, are forbidden
from being passed. That is, triangles with those highly con-
gested edges that the net in the frontier needs to pass through
cannot be a frontier∗ during search, as shown in s2.5.2 in
Fig. 7, and cannot be pushed into the heap. ψ starts with a large
number as ψ0 and gradually decreases to the target congestion
threshold ψ∗. ψ∗ is an empirical value between 0.8 and 1.0.
s.2.6 in Fig. 7 gives the procedure of pushing blocked nets and
the calculation of the evaluation function, considering the cost
of pushing/detouring and the end zone.

1) Searching With Dynamic Pushing: To tackle the net or-
dering problem, we embed a dynamic pushing technique during
the net path search. Fig. 8 illustrates how dynamic pushing
works. Nets A and B in Fig. 8(a) are symmetric, and all possible
net orders are (A, B)–C (i.e., A–B–C and B–A–C), A–C–B, and
C–(A, B). Only the order (A, B)–C can directly be solved by a
traditional router such as the rubber-band method [22] shown in
Fig. 8(b). However, dynamic pushing can handle net orders that
the existing work cannot consider. For the net order A–C–B,
after the ADS∗ algorithm connects nets A and C, net B pushes
routed net C and uses either path 1 or path 2, as shown in
Fig. 8(c). For the net order C–(A, B), after the ADS∗ algorithm
connects net C, net A pushes routed net C, and then, net B
also pushes net C and uses either path 1 or path 2, as shown
in Fig. 8(d).

To choose path 1 or path 2, we need to evaluate the cost
calculated by the evaluation function as ADS∗ searches a net
path. A heap is created in the initialization, as illustrated in s1.1

Fig. 8. Example of net ordering. (a) Nets initial location. (b) Net order (A,
B)–C and routing. (c) Net order A–C–B and routing. (d) Net order C–(A, B)
and routing. Only this work can obtain routing (c) and (d).

Fig. 9. Cost function calculation.

in Fig. 7. The evaluation function calculates the cost as the sum
of actual and estimated costs. The search frontier and other
elements as candidates of the next frontier in the heap keep
their own records of the pushed nets list, the width w of the
frontier, the actual cost rc, and the estimated cost ec. Before
searching starts, the w, rc, and ec of the triangles incident with
the start point are calculated, respectively, as follows:

w =w0 + s0 (2)

rc = p0 × w (3)

ec =h0 × w (4)

where w0 and s0 are the wire width and space of net C,
respectively; p0 is the distance from the start point to the
barycenter of an incident triangle; and h0 is the distance from
the barycenter to the endpoint. Then, those triangles are pushed
into the heap as the candidates of the search frontier and
flagged as “visited.” As shown in Fig. 9(a), when starting from
the start point of net C, the w, rc, and ec in incident triangles
are calculated.

Afterward, the candidate with the minimal cost in the heap is
selected as the search frontier. The unvisited and uncongested

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

LIU et al.: SUBSTRATE TOPOLOGICAL ROUTING FOR HIGH-DENSITY PACKAGES 211

neighbors adjacent to the search frontier are selected to
evaluate their cost. Then, the selected neighbors are pushed
into the heap and flagged as “visited.” We denote those selected
neighbors of the frontier as frontier∗’s and record the related
w∗, rc∗, and ec∗. Let i be the ith net that blocks the movement
from the search frontier to a frontier∗. The wire width and
space of net i are wi and si, respectively. Then, the frontier∗

can recursively be calculated by the following formulas:

w∗ = w + 2
∑

i

(wi + si) (5)

rc∗ = rc + Δp × w∗ (6)

ec∗ = h × w∗ (7)

where Δp is the distance between the barycenter of the
frontier triangle and the frontier∗ triangle, and h is
the distance between the frontier∗ triangle barycenter and the
endpoint.

We explain the case shown in Fig. 9(a) with (5)–(7). Net B
blocks net C when net C moves from the frontier in triangle-1
to the frontier∗. If net C pushes net B, the frontier∗ contains
two segments from each pushed net. Thus, the width of the
search frontier w∗ adds double width and space of net B, as
shown in (5), and results in the increase of the actual cost rc∗

and the estimated cost ec∗. Otherwise, if net C detours around
net B, although w∗ is still w, the sum of h and Δp increase,
as shown in (6) and (7). It is a tradeoff between pushing net
B and detouring net B in the presence of the evaluation func-
tion. However, our dynamic programming technique and heap
implementation in ADS∗ give the optimal choice. In ADS∗,
dynamic programming is used. In each searching step, the
optimality of the subproblem is guaranteed by always choosing
the first element from the minimum heap. Thus, the optimality
of the original problem is guaranteed based on our evaluation
function.

Equations (5)–(7) show the basic difference between con-
ventional rip-up and reroute and dynamic pushing. Once a net
is pushed, its width is added to w∗, and the cost computed
in (6) and (7) contains the accumulated widths of all the nets
pushed. However, the cost in conventional rip-up and reroute
only contains the routing and detouring wire length.

Once a candidate with the minimal evaluation function value
is selected from the heap, it recursively becomes the search
frontier for subsequent searching. Fig. 9(b) is an example
of a routing solution found by using dynamic pushing with
evaluation function.

Based on the aforementioned searching process with the
evaluation function combining with dynamic programming (as
illustrated in Fig. 7), ADS∗ can find the optimal path between
path 1 and path 2 in Fig. 8(c) or (d).

A four-step detailed router, i.e., Mighty, was presented in
[23]. The core algorithms are Lee’s maze [20] and post opti-
mization. Three push techniques, namely, unitpush, jumppush,
and pointpush [23], were proposed with some examples shown
in [23, Figs. 3(k) and (l) and 4(a)–(c)] in the third step, i.e., weak
modification. The essential difference between our dynamic
pushing and push techniques in [23] is that [23] is based

Fig. 10. Different routing results between the “traditional rip-up and reroute”
and “dynamic pushing.” (a) Given nets. (b) Routing result by the traditional
rip-up and reroute. (c) Routing result by dynamic pushing.

Fig. 11. Comparison between fixed end-point [(a) Detour and (d) Unroutable]
and flexible via-staggering [(b) Nondetour, (c) 3-D description, and (e)
Routable].

on two-layer routing technologies, whereas ours is based on
planar routing. Therefore, our dynamic pushing is a wire push,
whereas the push technique in [23] is only a via relocation. In
[23, Figs. 3(k) and (l) and 4(a)–(c)], we can see that it does not
push any wire at all. In addition, the method does not work if
the route is only in one layer.

It is worth mentioning that “dynamic pushing” in (planar)
substrate routing is different from the traditional rip-up and
reroute that needs the proper net order for rerouting. This is
illustrated in Fig. 10, where Fig. 10(a) shows the given nets
A and B to be routed. Fig. 10(b) shows the routing result by
the traditional rip-up and reroute if the net order is net A →
net B. Without the proper net order (net B → net A), the
routing result cannot be improved. Fig. 10(c) shows the routing
result by dynamic pushing, which is independent of the net
order. In addition, dynamic pushing leads to shorter wire length
compared with the current best known method of topological
routing (BKM) (as discussed in Section IV).

2) Searching With Flexible via Staggering: We use the flex-
ible via-staggering technique for planar routing to stop at any
point in the end zone. By considering this, ADS∗ can reduce
wire length and improve its routability. The following exam-
ple shows the two advantages of the flexible via-staggering
technique.

As shown in Fig. 11(a), in the traditional fixed endpoint case,
net B must detour around routed net A to complete connection.
However, the flexible via-staggering technique of ADS∗ can
both successfully route net B and obtain shorter wire length by
changing the endpoint of net A when the endpoint is flexible,
as shown in Fig. 11(b). Fig. 11(c) gives the 3-D description of
the flexible via-staggering technique. Fig. 11(d) shows a worse
case, where routed net A blocks all the possible routes for net B.
In this case, the flexible via-staggering technique can also suc-
cessfully route net B and obtain shorter wire length by changing
the endpoint of net A, as shown in Fig. 11(e). Therefore, the

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 12. (a) End zone. (b) End-zone cost.

flexible via-staggering technique can obtain higher routability
and shorter wire length. Moreover, it has no extra expense since
it makes use of the required via-staggering pitch.

The size of the end zone is decided by the minimum and
maximum via-staggering pitches in the layers between the
current buildup layer and the bottom layer, as discussed in
Section II-A. Our search considers the cost caused by ending
close to the oz as follows. The end zone can be viewed as the
combination of two zones [see Fig. 12(a)]. We define the zone
with a radius of d1 as the 0-cost zone, whereas the zone within
the circle with a radius of d2 and outside the circle with a radius
of d1 is defined as the linear-cost zone.

In design, the minimum staggered via pitch is the best
choice for the connection from the endpoint to the solder ball.
Meanwhile, in the 0-cost zone, mostly, the endpoint can be
connected to the assigned solder ball by using the minimum
via-staggering pitch in a zigzag manner. We do not give any
penalty for such connections. Therefore, we choose the cost
of each position in the 0-cost zone to 0. However, while an
endpoint is in the linear-cost zone, which means that the offset
larger than the minimum via-staggering pitch has to be used,
we need to give a penalty to reduce the negative effect on the
integrity of the P/G plane. Thus, we define a linear cost function
g(x) for the cost of each location in the linear zone, as shown
in Fig. 12(b), where s is the slope of g(x). Based on parameters
s, d1, and d2, we have the following theorem to derive the rules
R1 and R2 for the searching algorithm ADS∗, where w is the
width of the search frontier.

Theorem 1: R1: Every search frontier ends no later than it
enters the 0-cost zone.

R2: After the search frontier enters the end zone, in every
consecutive searching step, if w > s, searching ends; else,
searching continues.

R1 and R2 extend the traditional search that finds the shortest
path between two fixed locations to finding the shortest path
from a fixed location to a zone. Since these rules determine the
searching end, i.e., the endpoint, the estimated cost determined
by the estimated endpoint location should also be impacted.
Thus, (4) and (7) can be rewritten as follows. Note that based
on R1, the distance h between the frontier triangle barycenter
to the oz satisfies h ≥ d1. Thus

ec =

⎧⎨
⎩

(h0 − d2) × w + (d2 − d1)
×min(s, w), h0 > d2

(h0 − d1) × min(s, w), d1 ≤ h0 ≤ d2

(8)

ec∗ =

⎧⎨
⎩

(h − d2) × w∗ + (d2 − d1)
×min(s, w∗), h > d2

(h − d1) × min(s, w∗), d1 ≤ h ≤ d2.
(9)

Fig. 13. Reordering and finding a better solution. (a) Net A is pushed twice.
(b) Better solution.

Fig. 14. (a) Bent. (b) Stretch.

It is worth mentioning that each net has its own start point
and specified solder ball in the bottom layer. In addition, each
solder ball has its own end zone in the related buildup layer.
Each end zone has some PCDT triangles and D-PCDT edges
inside. Thus, there is no conflict of endpoints inside the end
zone between any two nets, as shown in Fig. 11(c). That is, any
two nets unlikely end their routes at the same endpoint inside
the end zone.

C. Reordering Strategy

Based on our experiments, we observe that routing nets
frequently results in bent wires caused by pushing, as demon-
strated in Figs. 13(a) and 14(a). Bent wires usually involve
unnecessary detours and increase total wire length. We solve
this problem by using rip-up and rerouting based on the fol-
lowing reordering strategies. That is, after one iteration of all
nets routing by ADS∗ (see s2.1 in Fig. 5), we reorder all nets
(see s2.3 in Fig. 5). Then, we rip-up one net, leaving others still
routed, and reroute it by ADS∗(ψ, ξ) (see s2.1.1 and s2.1.2 in
Fig. 5).

Our reordering strategy is as follows. In the first iteration
of planar routing (see s1.3 in Fig. 5), short nets have a lower
probability of blocking unrouted nets. Therefore, we order nets
such that the net with the shortest distance between the start
point and the end zone is first routed. In the later iterations,
two strategies, i.e., whole reordering and partial reordering, are
combined for reordering in each iteration.

We define a net length ratio δ = l/u, where l is the net length
acquired from the latest routing iteration, and u is the distance
between the start point and the oz (the center of end zone). We
first use whole reordering, i.e., larger δ first, to generate a new
net order, which prioritizes nets with larger increases caused by
pushing. For example, in Fig. 13(a), net A is first pushed by
net B and then by net C. Thus, nets such as net A are allocated
a high priority to allow them to “stretch.” In Fig. 13(b), if the

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

LIU et al.: SUBSTRATE TOPOLOGICAL ROUTING FOR HIGH-DENSITY PACKAGES 213

TABLE I
TEST CASES AND EXPERIMENTAL RESULTS

Fig. 15. Topological routing results on a buildup layer. (a) Case 3. (b) Case 4. (c) Case 8.

order A–B–C is used for rerouting, a better solution with shorter
length is achieved.

After establishing a high-level order using whole reordering,
we still need to perform local changes using partial reordering.
That is, if we find the case that one net pushes a group of nets
in the iteration of all nets routing by ADS∗ (i.e., s2.1 in Fig. 5),
the last pushed net has the highest priority. For example, in
Fig. 14(a), net A pushes group nets B and C. Net C is the last
pushed net; we first reroute net C and then net B. However, if
we use only whole reordering based on δ, the order is B–C since
net B has a larger increase in length because of the push by net
A. However, rerouting net C first and then net B is better, and
this is an order that can be obtained by partial reordering.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed algorithm has been implemented in C++ lan-
guage and integrated into an industrial package design tool
set for topological routing. We test our algorithm on industrial
package cases. Table I summarizes the package type and size,
die size, and total number of nets. The package type indicates
the number of buildup and core layers that have the same
meaning as that in Section II-A. The first seven test cases

are one-die packages, and the remaining two are multiple-
die packages. The experiments used a Linux 2.6 server with
2.4-GHz dual central processing units and 2-GB memory.

There is no similar existing work considering the same
problem formulation. To illustrate the advantage of our pro-
posed technologies, we compare with the current best known
method of topological routing, i.e., BKM, based on the A∗

searching algorithm as the best alternative. BKM is substrate
routing in an industrial flow, which also has the ripping-up-and-
rerouting procedure with A∗ routing path searching. We report
the number of failed nets, average wire length, and running
time in Table I for both algorithms. As shown in the table,
our routing algorithm leaves 212 failed nets, whereas BKM
leaves 936 failed nets when manually run. Meanwhile, the
average wire length of the final routing solution is reduced by
13.9%, on average, by our algorithm. For most test cases, our
algorithm has a running time on the same order of magnitude
as the BKM algorithm. We also test the routability achieved by
dynamic pushing and flexible via staggering, respectively. On
average, dynamic pushing reduces roughly by 75% failed nets,
and flexible via staggering reduces roughly by 25% failed nets.

In addition to the statistics in Table I, we also plot the
topological routing results of cases 3, 4, and 8 on a buildup layer

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 16. Partial substrate routing based on dynamic pushing and flexible via
staggering.

in Fig. 15(a)–(c), respectively. Case 8 is a complex package.
A magnified view of a corner of substrate routing based on
dynamic pushing and flexible via staggering is shown in Fig. 16.

We discuss about the advantage of dynamic pushing and rip-
upping and routing working together in the algorithm. With
dynamic pushing, we can reduce the total wire length or find
a solution that the traditional router cannot find, as illustrated
in Fig. 8. Fig. 9 and the related explanation in Section III-B1
give a detailed description of how dynamic pushing works.
In addition, the routing result considers routability. However,
during iterative routing, some of the pushing leads to the prob-
lem of bent wires. Then, rerouting with reordering strategies is
performed to solve the problem, as presented in Section III-C.
Since all the aforementioned operations are based on the eval-
uation function combining with dynamic programming and
the related parameters, the final routing result is with a good
tradeoff between pushing and detour. The experimental result
in Fig. 16 shows the following: three nets push one net, and
it obtains shorter total wire length compared with the result
without the pushing technique (i.e., the pushed net directly
routes, and the other three nets have to detour).

V. CONCLUSION

Considering high-density packaging, we have developed a
planar topological router. Compared with one current industrial
router, our algorithm does not limit start-point locations. We
allow routing to finish in a zone or at fixed locations, and
honor the solder ball assignment specified for start points.
Experiments using an industrial design tool and examples show
that the industrial design tool leaves 936 nets unrouted for
nine industrial designs with a total of 6100 nets, whereas our
algorithm reduces the unrouted nets to 212, a 4.5-times net
number reduction, which translates to design time reduction.

APPENDIX

PROOF OF THEOREM 1

Proof: Inside the end zone, path searching can end
anywhere.

Let g(x) be the cost of ending on the arbitrary location x
inside the end zone, where x is the distance from the oz to the
location.

When path searching decides to end, the estimated cost ec =
0, and the total cost is rc + g(x).

The goal of ADS∗ is to find the minimum cost path.
Meanwhile, for the sake of staggered via assignment, we

assume that the endpoint is preferred to be close to the oz,

Fig. 17. ADS∗ searching with flexible via staggering.

whereas the total cost remains the same.
Thus, ADS∗ prefers to end on a location inside the end zone

if and only if moving forward costs more than ending on the
current location.

When moving forward, the actual cost rc increases, and g(x)
first decreases (between d1 and d2) and then remains 0 (between
oz and d1).

Then, the only motivation of moving forward is that g(x)
decreases.

Therefore, rule R1 is obtained, i.e., net path searching always
ends between d1 and d2.

In the condition shown in Fig. 17, which is depicted in 1-D
for simplicity of presentation, let c0 be the actual cost on the
location f .

Then, c0 + w · Δf is the actual cost on the location f ′

according to (6), where w is the new width when moving
forward from location f to f ′, including the case that some nets
will be pushed during moving forward.

Thus, the searching frontier ends if and only if the follow-
ing condition is satisfied:

c0 + w · Δf + g(f ′) > g(f) + c0

where g(f) and g(f ′) are the costs caused by ending on the
location f and f ′, respectively.

Then, w > (g(f) − g(f ′))/Δf , and g(x) is a linear function.
Hence, w > ((g(f) − g(f ′))/Δf) → g′(f ′) = s, and rule

R2 is proved. �

REFERENCES

[1] J. W. Fang, I. J. Lin, Y. W. Chang, and J. H. Wang, “A routing algo-
rithm for flip-chip design,” in Proc. Int. Conf. Comput.-Aided Des., 2005,
pp. 753–758.

[2] J. W. Fang, C. H. Hsu, and Y. W. Chang, “An integer linear programming
based routing algorithm for flip-chip design,” in Proc. Des. Autom. Conf.,
2007, pp. 606–611.

[3] M. M. Ozdal and D. F. Wong, “Simultaneous escape routing and layer
assignment for dense PCBs,” in Proc. Int. Conf. Comput.-Aided Des.,
2002, pp. 822–829.

[4] E. Winkler, “Escape routing from chip scale packages,” in Proc. IEEE
Electron. Manuf. Technol. Symp., 1996, pp. 393–401.

[5] R. S. Wang, R. Shi, and C. K. Cheng, “Layer minimization of escape
routing in area array packaging,” in Proc. Int. Conf. Comput.-Aided Des.,
2006, pp. 815–819.

[6] M. Horiuchi, E. Yoda, and Y. Takeuchi, “Escape routing design to reduce
the number of layers in area array packaging,” IEEE Trans. Adv. Packag.,
vol. 23, no. 4, pp. 686–691, Nov. 2000.

[7] R. Shi and C. K. Cheng, “Efficient escape routing for hexagonal array of
high density I/Os,” in Proc. Des. Autom. Conf., 2006, pp. 1003–1008.

[8] M. M. Ozdal, M. D. F. Wong, and P. S. Honsinger, “An escape routing
framework for dense boards with high-speed design constraints,” in Proc.
Int. Conf. Comput.-Aided Des., 1995, pp. 759–766.

[9] W. W. Dai, R. Kong, and M. Sato, “Routability of a rubber-band sketch,”
in Proc. Des. Autom. Conf., 1991, pp. 45–48.

[10] H. F. S. Chen and D. T. Lee, “A faster algorithm for rubber-band equiva-
lent transformation for planar VLSI layouts,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 15, no. 2, pp. 217–227, Feb. 1996.

[11] D. Staepelaere, “Geometric transformations for a rubber-band sketch,”
M.S. thesis, Univ. California, Santa Cruz, CA, 1992.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

LIU et al.: SUBSTRATE TOPOLOGICAL ROUTING FOR HIGH-DENSITY PACKAGES 215

[12] C. C. Tsai, C. M. Wang, and S. J. Chen, “NEWS: A net-even-wiring sys-
tem for the routing on a multilayer PGA package,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 17, no. 2, pp. 182–189, Feb. 1998.

[13] Y. Kubo and A. Takahashi, “A global routing method for 2-layer ball grid
array packages,” in Proc. Int. Symp. Phys. Des., 2005, pp. 36–43.

[14] S. S. Chen, J. J. Chen, S. J. Chen, and C. C. Tsai, “An automatic router
for the pin grid array package,” in Proc. Asia South Pacific Des. Autom.
Conf., 1999, pp. 275–281.

[15] M. F. Yu, J. Darnauer, and W. W. Dai, “Interchangeable pin routing with
application to package layout,” in Proc. Int. Conf. Comput.-Aided Des.,
1996, pp. 668–673.

[16] M. F. Yu and W. W. Dai, “Pin assignment and routing on a single-layer
pin grid array,” in Proc. Asia South Pacific Des. Autom. Conf., 1995,
pp. 203–208.

[17] L. P. Chew, “Constraint Delaunay triangulations,” Algorithmica, vol. 4,
no. 1, pp. 97–108, 1980.

[18] F. Bossen, “Anisotropic mesh generation with particles,” M.S. thesis,
Univ. CMU, Pittsburgh, PA, 1996.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[20] C. Y. Lee, “An algorithm for path connections and its applications,” IRE
Trans. Electron. Comput., vol. EC-10, pp. 346–365, Sep. 1961.

[21] E. F. Moore, “Shortest path through a maze,” Ann. Comput. Lab. Harvard
Univ., vol. 30, pp. 285–292, 1959.

[22] D. Staepelaere, J. Jue, T. Dayan, and W. W. Dai, “SURF: Rubber-band
routing system for multichip modules,” IEEE Des. Test Comput., vol. 10,
no. 4, pp. 18–26, Dec. 1993.

[23] H. Shin and A. Sangiovanni-Vincentelli, “A detailed router based on
incremental routing modifications: Mighty,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. CAD-6, no. 6, pp. 942–955, Nov. 1987.

Shenghua Liu (S’08) received the B.S. degree
(with the honor of outstanding graduate of Shanxi
Province) from Xidian University, Xi’an, China, in
2005. He is currently working toward the Ph.D.
degree with the Electronic Design Automation
Laboratory, Department of Computer Science and
Technology, Tsinghua University, Beijing, China,
where he completed his B.S. thesis.

He was a Visiting Student with the University
of California, Los Angeles, from September 2006
to December 2007. His current research interests

include layout algorithm, particularly fast congestion estimation, package rout-
ing, RDL routing, and 3-D global routing.

Guoqiang Chen received the B.S. degree in elec-
tronics and information system from Peking Uni-
versity, Beijing, China, in 1995 and the M.S.
degree in electrical engineering from the University
of Minnesota, Minneapolis, in 1998.

He is currently with Magma Design Automation,
Inc., San Jose, CA, as a Senior Manager of product
development for Magma’s chip package codesign
tool. He joined Magma as part of the acquisition of
Rio Design Automation, Inc., in 2007. At Rio, he
was part of the founding engineering team and led

the R&D team to bring RioMagic, the industry’s first chip package codesign
tool, from concept to production. Prior to that, he was with Synopsys, Inc.,
and Altera, where he worked in various areas of software development. His
current interests include VLSI physical design automation and package-aware
chip design.

Tom Tong Jing (M’02) received the B.S. degree
in electronic engineering and the M.S. and Ph.D.
degrees in computer science from the Northwest-
ern Polytechnical University, Xi’an, China, in 1989,
1992, and 1999, respectively.

From 1999 to 2001, he was a Postdoctoral Re-
searcher with the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
China. He was a member of the faculty (an Asso-
ciate Professor from 2001 to 2004 and a Tenured
Associate Professor from 2004 to 2006) with the

Department of Computer Science and Technology Department, Tsinghua Uni-
versity. He was a Visiting Scholar with the University of California, San
Diego, and the Chinese University of Hong Kong, Sha Tin, Hong Kong.
From 2006 to 2008, he was a Research Associate with the Department of
Electrical Engineering, University of California, Los Angeles. He is currently
with Synopsys, Inc., Mountain View, CA. He has authored or coauthored more
than 120 papers published in technical journals and conference proceedings.
His research interests include computer-aided design for VLSI circuits and
systems, combinational optimization and modern optimization methods, and
algorithms and data structures.

Dr. Jing served as a Technical Program Committee (TPC) Member of the
IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-
DAC) 2006; the Secretary General and Chair of the Physical Design and Inter-
connect Optimization TPC Subcommittee; the Session Chair of the IEEE/ACM
ASP-DAC 2005; the Session Chair of the IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP) 2005; a
TPC Member, a Panel Speaker, and a Session Cochair of the IEEE International
Conference on Communications, Circuits and Systems (ICCCAS) 2004; a
Session Chair of the International Symposium Computing and Information
(ISCI) 2004; the Secretary General and TPC Member of the IEEE International
Conference on ASIC (ASICON) 2003; and a Session Cochair of the IEEE/ACM
ASP-DAC 2003. He was a recipient of the IEEE/ACM ASP-DAC Best Paper
Award in 2005, the ACM/IEEE International Symposium on Quality Electronic
Design (ISQED) Best Paper Nomination in 2005, the IEEE ASICON Outstand-
ing Student Paper Award in 2003, the Second Class Science and Technology
Award from the Ministry of Education of China in 2005, the First Class Award
for Excellence in Teaching from the Beijing Municipal Education Commission
in 2004, and the First Class Awards for Excellence in Teaching from Tsinghua
University in 2002 and 2004.

Lei He (M’99–SM’08) received the Ph.D. degree in
computer science from the University of California,
Los Angeles (UCLA), in 1999.

He is currently an Associate Professor with
the Department of Electrical Engineering, UCLA.
He was a faculty member with the University of
Wisconsin-Madison between 1999 and 2001. He
has held visiting or consulting positions with Intel,
Hewlett-Package, Cadence, Synopsys, Inc., Rio De-
sign Automation, Inc., and Apache Design Solutions.
He has authored one book and more than 170 tech-

nical papers. His research interests include VLSI circuits and systems, and
electronic design automation.

Dr. He has been a Technical Program Committee Member for a number
of conferences, including Design Automation Conference, International Con-
ference on Computer-Aided Design, International Symposium on Low Power
Electronics and Design, and International Symposium on Field Programmable
Gate Array. He was a recipient of the National Science Foundation CAREER
Award in 2000, the UCLA Chancellor’s Faculty Career Development Award
in 2003, the IBM Faculty Award in 2003, the Northrop Grumman Excellence
in Teaching Award in 2005, the Best Paper Award at the 2006 International
Symposium on Physical Design, and multiple best paper nominations at the
Design Automation Conference and International Conference on Computer-
Aided Design.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Tianpei Zhang received the B.S. degree in applied
physics from the University of Science and Tech-
nology of China, Hefei, China, in 1997, the M.S.
degree in electrical engineering from Purdue Uni-
versity, West Lafayette, IN, in 2000, and the Ph.D.
degree in electrical engineering from the University
of Minnesota, Minneapolis, in 2006.

He is currently with Cadence Design Systems, San
Jose, CA. His research interest includes VLSI physi-
cal design, routing, and design for manufacturability.

Robi Dutta received the M.S. degree in electri-
cal engineering from the University of Calgary,
Calgary, AB, Canada, in 1971 and the Ph.D. degree
in electrical engineering from Concordia University,
Montreal, QC, Canada, in 1975, on a fellowship from
the National Research Council of Canada.

Before founding Everest Design Automation in
1997, he worked on diverse areas of mathematical
modeling and electronic design automation at
various companies, including Alcan, Bell-Northern
Research, Datapoint Corporation, Digital Equipment

Corporation (DEC), and SGI. He has also been closely associated with the
academia, including the University of California, Berkeley (UC Berkeley), and
the Massachusetts Institute of Technology (MIT), Cambridge. While at DEC,
he supervised an M.S. thesis work on physical design at MIT. In addition,
during 1986–1987, he was a Visiting Fellow with UC Berkeley. Since the
acquisition of Everest by Synopsys, Inc., in 1998, he was a Vice President of
Engineering with Synopsys, leading the R&D efforts in various aspects of VLSI
physical design until May 2003. In 2003, he cofounded Rio Design Automation,
Inc., which was acquired by Magma Design Automation, Inc., San Jose, CA, in
2007. He is currently an independent EDA consultant.

Xian-Long Hong (M’95–SM’95–F’03) received the
B.S. degree from Tsinghua University, Beijing,
China, in 1964.

Since 1988, he has been a Professor with the
Department of Computer Science and Technology,
Tsinghua University. He has authored five books and
more than 400 papers. His research interests include
very large scale integration layout algorithms and
design automation systems.

Prof. Hong has served as a Steering Member of
the Asia and South Pacific Design Automation Con-

ference (ASPDAC) and a Cochair of the Technical Program Committee of
ASPDAC in 1999, 2004, and 2005, respectively. He has been an Associate
Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I
since 2002.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 15, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

