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Abstract—Time series data naturally exist in many domains includingmedical data analysis, infrastructure sensor monitoring, and

motion tracking. However, a very small portion of anomalous time series can be observed, comparing to the whole data. Most existing

approaches are based on the supervised classificationmodel requiring representative labels for anomaly class(es), which is challenging

in real-world problems. So canwe learn how to detect anomalous time ticks in an effective yet efficient way, givenmostly normal time

series data? Therefore, we propose an unsupervised reconstructionmodel namedBeatGANwhich learns to detect anomalies based on

normal data, or data whichmajority of samples are normal. BeatGAN provides a framework to adversarially learn to reconstruct, which

can cooperate with both 1-d CNN andRNN. Rarely observed anomalies can result in larger reconstruction errors, which are then

detected based on extreme value theory. Moreover, data augmentation with dynamic time warping regularizes reconstruction and

provides robustness. In the experiments, effectiveness and sensitivity are studied in both synthetic data and various real-world time

series. BeatGAN achieves better accuracy and fast inference.

Index Terms—Time series, adversarial reconstruction networks, anomaly detection, data augmentation

Ç

1 INTRODUCTION

TIME series is an important type of data object, which has
the characteristics of high dimensions, large data volume,

and real-time streaming, and it is widely used in various
applications. For example, in the medical field, the patient’s
ECG data and respiratory data are recorded throughmedical
equipment. In the industrial field, sensors of various devices
collect state data in real time. In the financial field, exchanges
record stock price changes every moment which form time
series data. These massive time series data contain various
information, and some of them are different from the general
mode of the data, and their characteristics are obviously dif-
ferent from most data. We call such data ”anomalous data”,
which Fig. 1 shows an example in ECGwaveform. Although
the proportion of anomalous data is very small, it often con-
tains more valuable information and has important research
value in various fields. For example, in the medical field,
patients have a large amount of monitoring data such as

electrocardiogram, blood pressure, respiration rate, etc.
Using these data to detect the abnormal state of the patient
and early warning is the primary goal of modern medical
treatment. So, it is very significant to propose a method
detecting anomalous time series segments in large-scale
rhythmic time series data.

Another key goal in our research is explainability. In
practice, experts in medical and other domains need to
know not only whether an anomaly exists but also to under-
stand the mechanism of anomalies. This leads to the follow-
ing questions:

How can we automatically detect anomalous beats when moni-
toring multivariate time series? Can we pinpoint the anomalous
time ticks that led to our decision?

The traditional anomaly detection algorithm faces the
shortcomings of low efficiency and shallow accuracy in
today’s massive and complex data, and cannot model the
characteristics of normal samples precisely. Besides, there are
several challenges in time series anomaly detection: 1) mas-
sive time series can contain few anomalies, which is insuffi-
cient and imbalanced for supervised classification; 2)
anomalous segments can be very different from one another,
e.g., some anomalous heartbeats are never seen in defined cat-
egories; 3) even in healthy patients, the time periods involved
in various heartbeat characteristics (e.g., P waves, QRS com-
plex, P-R, and R-R intervals) vary fromone beat to another.

Different from supervised methods, unsupervised anom-
aly detection methods are trained only on normal samples,
and then used to identify abnormal samples. Among many
anomaly detection methods, reconstruction-based anomaly
detection techniques are widely used. We expect to obtain
the true nature of the data by reconstructing them with their
lower-dimensional representation, then the reconstruction
error can be measured as the anomaly score for given sam-
ples. [1] uses reconstruction error between true and latent
representation to detect anomalies by the modified SVD
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decomposition. Autoencoder (AE) [2] allows for more com-
plex patterns by applying nonlinear functions for recon-
struction and anomaly detection. However, without proper
regularization, such a reconstruction easily leads to overfit-
ting, resulting in low accuracy.

Generative adversarial networks (GANs) is a successful
generative model that jointly learns to generate realistic syn-
thetic data while learning a discriminator [3]. Some works
utilize both generator and discriminator [4] for anomaly
detection and it provides an intuitive way to regularize the
reconstruction error.

Therefore, we propose an anomaly detection model, Beat-
GAN, which detects anomalies using adversarially gener-
ated time series as shown in Fig. 2. The model additionally
provides explainable results, pinpointing the time ticks that
led to our decision, rather than just an overall anomalous-
ness score.

BeatGAN reconstructs the data robustly and performs
regularization using an adversarial generation approach.
The generation is fulfilled by reconstruction and regulariza-
tion of jointly optimizing hidden feature matching and dis-
crimination in a generative adversarial network. Pairwise
feature matching loss and the reconstruction loss are used to
tune model parameters. To further improve its accuracy, we
exploit the characteristics of rhythmic time series by design-
ing a warping method to augment training data in our pro-
posed BeatGAN method. Experiments show that BeatGAN
detects anomalies accurately in different types of time series
like ECGdata from theMIT-BIH arrhythmia database,multi-
variate time series from SWaT database, and sensor time
series data from the CMUMotion Capture database.

In summary, our main contributions are as follows:

– Anomaly detection by observing massive normal time
series: We propose to use a reconstruction-error
method with the generative adversary network,
named BeatGAN to detect anomalous time series, by
comparing the difference between generated time
series and the original one. Taking advantage of adver-
sarial regularization, BeatGAN is robust. Moreover,
time series warping is proposed for data augmenta-
tion to improve detection accuracy.

– Effectiveness: BeatGAN outperforms existing state-of-
the-art methods in identifying anomalies in ECG

and SWaT time series, achieving an accuracy of
nearly 0.95 and 0.82 AUC, and very fast inference
(2.6 ms per beat).

– Explainability: BeatGAN is capable of pinpointing
where the anomalous patterns occur, outputting
interpretable results by visualization and attention
routing (see Fig. 2).

– Generality: BeatGAN can successfully detect anoma-
lies from the different multivariate sensor time series
databases.

– Reproducibility: BeatGAN is open-sourced.1

The rest of the paper is organized as follows. Section 2
summarizes the related works about anomaly detection. In
Section 3, we describe the key components of our BeatGAN
framework, and the corresponding optimization algorithm.
In Section 4, we design our experimentswith several datasets
and analysis the results. Section 5 presents the conclusions.

2 RELATED WORK

Time series mining and anomaly detection methods can be
categorized into four categories.

2.1 Statistics-Based Methods

Statistical-based methods mainly identify abnormal points
that deviate from the normal distribution. A classical statis-
tics-based method is 3-sigma criterion [5], which assumes
that the data follows a normal distribution, and then the
probability that the data is within the 3-sigma range ðm�
3s;mþ 3sÞ is 99.74%. Then the data that falls outside this
interval is regarded as anomalous data. Besides, the Grubbs’
test [6] is a statistical-based method as well. It also assumes
the data follows a normal distribution and can output the
confidence of each test sample. These methods require a
prior assumption while real world data may not satisfy. So
some works use the extreme value theory to detect the
anomalies in univariable time series [7], [8]. This method
doesn’t need to assume the prior distribution of the data,
but it still can not handle the multivariable time series well.

2.2 Classification-Based Methods

Supervised classification approaches require a large amount
of labeled data, and either manually defined features or hid-
den variables learned from deep models. If given enough
labeled data, these deep learning based approaches can
achieve high accuracy [9], [10], [11]. However, the labeled
data is usually difficult to obtain in practice [12]. Further-
more, it has difficulty generalizing to anomalies which dif-
fer significantly from those it has seen, e.g., when new types
of anomalies appear. Based on these defects, Scholkopf pro-
posed One-Class SVM [13], an unsupervised model which
learns from normal data to identify anomalies on unseen
data. It works by separating the origin from the data instan-
ces in a kernel space, corresponding to nonlinear regions
describing the normal data in feature space. Each instance’s
anomalousness score is measured by its normalized dis-
tance to the determined decision boundary.

Fig. 1. ECG waveform data with anomalies.

1. https://github.com/BGT-M/spartan2-tutorials/blob/master/
BeatGAN.ipynb
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2.3 Vocabulary-Based Methods

Vocabulary-based methods learn a set of vocabularies (pat-
terns) of the given time series. The rare vocabularies are
regarded as anomalies. Hidden Markov Models (HMMs)
[14] are classic vocabulary-based method. Variants include
DynaMMo [15] which uses Dynamic Bayesian Networks
and AutoPlait [16] which uses two-level HMMs. Recent
work [17] proposed a vocabulary approach named BEATLEX

which performs segmentation and forecasting by optimizing
minimum description length (MDL). This model automati-
cally segments the given long time series and summarizes
the different patterns as vocabularies, these vocabularies are
regarded as the basis of the time series and the rare variables
are detected as anomalies. And this model can segment long
time series more properly and we can get meaningful sub-
sequences. In addition, Keogh et al. introduced an efficient
data structure, Matrix Profile [18], based on which the given
time series can be effectively clustered for the anomalous
patterns. [19] proposed a parameter-free algorithm SKIMP
to calculate Matrix Profile faster. NormA [20] elaborately
selects some of sequences and build normal behavior models
based onMDL principal.

2.4 Reconstruction-Based Methods

Anomalies can be defined as events that deviate significantly
from the patterns observed in real data [21]. Thus, many
works detect anomalies by computing a synthetic recon-
struction of the data and then measuring the deviation
between an observed instance and its reconstruction. Princi-
pal Component Analysis (PCA) and Singular Value Decom-
position (SVD) is the linear reconstruction model. The
low-rank decomposition makes the model pays more atten-
tion to the “normal” part of the data and the anomalous part
is ignored in reconstructed data. Autoencoders can also be
used for deep-learning based anomaly detection by inspect-
ing its reconstruction error. And it is more suitable for com-
plex data because of the power of deep learning. Jinwon
used autoencoders (AE) and variational autoencoders (VAE)
for anomaly detection on several benchmark datasets [2].
Dan also proposed a variational autoencoder based recon-
struction model to learn the key features of normal time
series, and detect the anomalies using the reconstructed time
series [22], [23]. The MSCRED model [24] proposes an
autoencoder to reconstruct signature matrix to jointly con-
sider the multi-scale time dependence, robustness and

explainability. The USAD [25] utilizes adversely trained
autoencoders to learn data features in an unsupervised way
while achieving a high performance.

Recently, with the growing interest in generative adver-
sarial networks, researchers have proposed anomaly detec-
tion using adversarial training. AnoGAN [4] and Ganomaly
[26] are both originally proposed for anomaly detection on
visual data, while ours is designed for a series of real num-
bers that need robustness against speed variations. AnoGAN
needs to learn a latent vector for every input for anomaly
detection, which is very time consuming and limits its appli-
cation. Ganomaly uses an encoder-decoder-encoder struc-
ture, and identify the anomalies by comparing the latent
representations. Zenati uses the BiGANmodel which has the
ability of both generating and inferencing to detect anomalies
and achieves good performance [27]. Inspired by AnoGAN
and LSTM-based generative adversarial network [28], Li pro-
poses the MAD-GANmodel for industrial time series anom-
aly detection, themodel consists of an LSTM-based generator
and LSTM-based discriminator. Our BeatGAN uses data
reconstructions, resulting in a more concise model and better
performance for time series data. Meanwhile, BeatGAN can
give explainable results with such a reconstruction.

Other approaches proposed tensor decomposition based
methods for time series forecasting [29], [30] and detecting
anomalies based on the forecast [31], [32]. The Deep
Autoencoder Gaussian Mixture Model(DAGMM) [33] com-
bines a deep autoencoder and a gaussian mixture model to
model the distribution of time series data. Series2Graph [34]
represents subsequences in low-dimensional embeddings
and identifies anomalies with varying lengths.

BeatGAN provides an explainable approach combining
autoencoders and generative adversarial networks, incorpo-
rating the advantages of both models. Table 1 summarizes
existing works related to our problem. Only BeatGAN satis-
fies all the desired characteristics.

3 PROPOSED MODEL

Let T 2 RM�N be a multivariate time series, which isN time
ticks in length, and has M dimensions for each time tick,
e.g., reading from M sources. A rhythmic time series T con-
tains sub-series, i.e. beats. For example, a beat in the ECG
time series consists of a sequence of a P wave followed by a
QRS complex, T, and U waves. We fix the window size for a

Fig. 2. BeatGAN successfully detects anomalous rhythms, and explains the results. The size of training input is 28.6 million time ticks, and inference
can be as fast as 2.6 ms per beat. The original beat is shown by solid lines, and the generated beat is shown by dashed lines.
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beat in time series, and beats are denoted as x 2 RM�L,
where L is large enough for containing a beat. Zero-padding
or sampling can be used for fitting irregular beats in such a
window if we know the exact length of each beat.

Most beats in time series are normal in practice, and the
amount of beats is massive. Our anomaly detection problem
can then be described as follows:

Informal Problem 1 (Anomalous beat detection). Given
a collection of multivariate time series beats X ¼ fxi; i ¼
1; 2; . . . ; g with most of beats in the normal class,

– Detect anomalous beats x in a collection of unseen
time series,

– Such that they deviate significantly from the recon-
structed time series, and can pinpoint anomalous time
ticks in x for explanation.

3.1 General Framework

The idea of our model is to detect anomalies by reconstruct-
ing their “normal” state. In general, the framework for
detecting anomalies based on reconstruction error will have
two main components: reconstruction (or generation) model
optimization, and anomalousness scoring based on the
reconstruction.

The optimization objective for learning the reconstruc-
tion model is: for input time series, our model reconstructs
a more “normal” time series, the anomaly score can be cal-
culated by comparing the residuals between original time
series and reconstructed time series. The general reconstruc-
tion-based model’s loss function can be formulated as

L ¼ X �GðXÞj jj j2þRðGÞ
¼
X
x

x�GðxÞj jj j2þRðGÞ; (1)

where X is a matrix concatenating each beat matrix x 2 X
along its columns. Gð�Þ is the reconstructed model, and
RðGÞ is the regularization term for different models.

And the anomalousness score for a beat x is calculated as

AðxÞ ¼ x�GðxÞj jj j2; (2)

which summarizes the distance of each time tick between
original beat and reconstructed beat. After calculating
anomalousness score for each dimension, we select the top-
5 dimension with the maximum score as potential root
cause to direct users’ attention.

Many reconstruction-based anomaly detection methods
can be expressed by this framework, using Eq. (1) as objec-
tive and Eq. (2) to calculate the anomalousness score. We

list the specific forms of reconstruction-based anomaly
detection methods including SVD, AE, VAE, and our Beat-
GAN in Table 2, The Gð�Þmeans the reconstruction function
and the RðGÞ is the regularization loss for reconstruction
model optimization. The SVD-based methods reconstruct
data using low-rank approximation. ui and vi are the ith col-
umns of U and V respectively obtained by singular value
decomposition. Moreover, FBOX uses the same reconstruc-
tion model as SVD, but uses a different anomalousness
score which applies a threshold based on percentiles of the
reconstructed distribution.

The AE-based and VAE-based methods, and BeatGAN
are all neural network based model. They reconstruct data
using an encoder networkGEð�Þ and decoder networkGDð�Þ.
While AE-based methods do not have any explicit regulari-
zation, VAE-based methods use the KL divergence between
the approximate posterior distribution QðzjxÞ learned by the
encoder, and the prior distribution P ðzÞ of the latent variable
z often uses Gaussian distribution. While our BeatGAN uses
adversarial regularization in its training process.

We will show in the following how BeatGAN regularizes
its reconstruction, taking the benefits from generative
adversarial networks (GAN).

Fig. 2 shows the framework of our proposed method. In
this example, we preprocess the ECG data and train the
model with normal heartbeats. At test time, for each unseen
beat x, we feed it into the trained model and obtain the
reconstructed beat x0 (showed by dashed lines in Fig. 2). By
comparing the residuals between x and x0, we capture the
anomalies.

3.2 Proposed Model With Adversarial
Regularization

As Fig. 3 shows, our adversarial reconstruction framework
has three key components: encoder GEð�Þ, decoder GDð�Þ,
and discriminatorDð�Þ.

TABLE 2
Unifying the Reconstruction-Based Methods

for Anomaly Detection

Gð�Þ is the reconstruction function, RðGÞ is the regularization loss.

TABLE 1
A Comparison of Related Approaches

Fig. 3. An illustration of BeatGAN framework.
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To reconstruct time series x, GEðxÞ encodes the input x to
a hidden vector z that represents its important features.
Then GDðzÞ generates a time series x0 from the hidden vec-
tor z. Thus our reconstruction goal is GðxÞ ¼ GDðGEðxÞÞ.
Discriminator Dð�Þ regularizes the reconstruction by mini-
mizing the classification error.

In the framework, we can generally use the same net-
work structure from a broad range of neural networks. We
implement two alternative structures: the one-dimensional
convolutional neural network (1-D CNN), and recurrent
neural networks (RNN).

1-D CNN. The CNN network is effective in learning good
local features (as well as the combinations of them) [35]. So
it is more suitable for some medical time series since these
time series always contain some sub-patterns [9]. In our pro-
posed model BeatGAN, we use filters in CNN to slide in one
dimension along the temporal dimension. The structure of
1-D CNN implemented in encoder is illustrated in Fig. 4.

RNN Networks. Recurrent neural network behaves well on
learning the trend of the time series which can be used to han-
dle smoothed time series.We choose the GRU cell as the reali-
zation of RNN in our proposed BeatGAN, because GRU cell
can avoid the gradient vanishing problem and is more effec-
tive than LSTM. GRU cell has two gates: update gate and the
reset gate. The cell compute the last hidden state ht by Eq. (3)

zt ¼ sðWz � ½ht�1;xt�Þ
rt ¼ sðWr � ½ht�1;xt�Þ
ĥt ¼ tanhðW � ½rt � ht�1þ; xt�Þ
ht ¼ ð1� ztÞ � ht�1 þ zt � ĥt: (3)

In terms of regularization, we use the adversarial train-
ing framework of GAN in our model. In the GAN frame-
work, the generator and the discriminator compete in a
two-player min-max game. The discriminator tries to distin-
guish real beats from reconstructed beats and the generator
tries to generate beats that can fool the discriminator. The
generator learns the generating mechanism of data by this
adversarial training. In the training process, the discrimina-
torDð�Þ tries to maximize the loss function

LD ¼ Ex�Pr ½logDðxÞ� þ Ez�Pz ½log ð1�DðGðzÞÞÞ�; (4)

which discriminates the generated x0 from x as different
class label 0 and 1. The generator G tries to minimize the fol-
lowing loss function

LG ¼ Ez�Pz ½log ð1�DðGðzÞÞÞ�; (5)

which makes the generated beats unable to be discriminated
byDð�Þ.

Actually, the essence of generating adversarial networks
is to optimize the JS divergence of distribution between real
data and the generated data. We get the ideal discriminator
D� when the gradient of LD equal to 0.

D�ðxÞ ¼ PrðxÞ
PrðxÞ þ PgðxÞ

: (6)

While PgðxÞ is the distribution of generated data. And
after we use D� in LG, we can get the objective function of
the generator

LG ¼ Ex�Pr ½logDðxÞ� þ Ex�Pg ½log ð1�DðxÞÞ�

¼ Ex�Pr

�
log

Pr

PrðxÞ þ PgðxÞ

�
þ Ex�Pg

�
log

PgðxÞ
PrðxÞ þ PgðxÞ

�
¼ JSðPrjjPgÞ � 2log 2: (7)

In practice, directly using Eq. (5) as adversarial regulariza-
tion does not perform well due to the diminished gradient
andmode collapse, which is also theweakness of the JS diver-
gence. Thus, instead of calculating loss by the original x and
vector z in hidden space, we set up the relationship between
the original x and reconstructed x0 via our reconstruction
part of the model. Therefore, we consider using pairwise fea-
ture matching loss which minimizes differences of the statis-
tics between original and generated time series, learned in
hidden layers of the discriminator Dð�Þ. Letting fDð�Þ be the
activation vector on a hidden layer of the discriminator, pair-
wise featurematching loss between x and x0 is

Lpfm ¼ fDðxÞ � fDðx0Þj jj j2: (8)

Overall, the objective of reconstruction with adversarial
regularization is to minimize the following loss function:

LG ¼ x� x0j jj j2þ� fDðxÞ � fDðx0Þj jj j2; (9)

where x0 ¼ GðxÞ, and � is the weighting parameter adjust-
ing the impact of the adversarial regularization. Meanwhile,
the objective of the discriminator is to maximize the follow-
ing loss function:

LD ¼
1

N

XN
i

½logDðxiÞ þ log ð1�Dðx0iÞÞ�: (10)

The discriminator network and the adversarial training pro-
cess are the biggest differences compared to autoencoders,
the adversarial regularization ensures that the reconstruction
part will not just compress and decompress the input data.

Finally, we use theAdamoptimization algorithm for learn-
ing the reconstructionmodel, as summarized inAlgorithm 1.

To perform anomaly detection, we use the reconstruction
model to reconstruct a time series x0 using our model
trained on normal data, for given x. We then evaluate the

Fig. 4. An illustration of CNN structure in reconstructor (encoder-
decoder). Parameters of Conv1d (4,2,1) and ConvTrans1d (4,2,1) mean
that the kernel size is 4, the stride is 2 and the padding is 1.
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anomalousness score by comparing the difference between
x0 and x as in Eq. (2). Since anomalies always occur in a por-
tion of time ticks of a beat, the residuals between ticks of x
and x0 can indicate where the anomaly occurs, routing
users’ attention to the anomalous portion and providing an
explanation.

Algorithm 1. Training Algorithm

1: uG; uD initialize network parameters
2: for number of training iterations do
3: Sample fx1; . . .; xmg � a batch from the normal data
4: Generate fx1;

0 . . .; x0mg by GE and GD

5: Compute LD by Eq. (10)
6: uD  � uD þ aruDðLDÞ //r is the gradient
7: Compute LG by Eq. (9)
8: uG  � uG þ aruGðLGÞ
9: end for

3.3 Automatic Threshold Selection

During the online anomaly detection, given a multivariate
time series with length L, our BeatGAN model computes
the anomaly score for each time tick. So the anomaly scores
form a univariate time series fa1; a2; . . .; aLg, our goal is to
automatically select the anomalous time ticks. Then the
problem can be formed as follows:

Informal Problem 2 (Automatic anomaly detection).
Given a collection of observed normal univariate time series of
anomaly score fao1; ao2; . . .; aong and a collection of test univari-
ate time series of anomaly score fau1 ; au2 ; . . .; aumg

– Determine whether each time tick in test time series is
anomalous (0-normal/1-anomalous)

Here, we use the principle of Extreme Value Theory
(EVT) to set a threshold for time tick. Extreme value theory
is used to deal with the maximum deviation from the
median of probability distribution. So it is often used in the
analysis of rare cases (such as once in a century flood and
risk analysis in finance). It is more general than other theory
because it doesn’t need any assumption for data distribu-
tion. In EVT, the most widely used is POT (Peaks Over
Threshold) theorem, it uses the GPD (Generalized Pareto
Distribution) to estimate the extremum (value greater than
a certain threshold) distribution. Like Fig. 5 shows, we will
use GPD (red dash line) to fit the data larger than threshold.

The idea of POT is to fit the tail portion of the data distri-
bution with GPD with parameter s; g[36]

fðxÞ ¼ 1

s

 
1þ gx

s

!�1
g�1

:

For parameter s and g, we can estimate the value by
Maximum Likelihood Estimation(MLE), then we can set the
threshold with another risk parameter q,

z ¼ tþ s

g

  
qn

Nt

!�g
� 1

!
: (11)

The automatic threshold selection algorithm is summa-
rized in Algorithm 2, it is also a streaming algorithm. The
algorithmwill only store the data that is larger than the given
threshold, so it only occupies little memory. For each stream-
ing data, the algorithm will compare it with the current
anomaly threshold, if it is larger than the anomaly threshold,
this data will be stored in the anomalies set. Otherwise, the
algorithm will re-estimate the current Generalized Pareto
distribution and compute another anomaly threshold. So in
this algorithm, the anomaly thresholds change over time.

Algorithm 2. Anomaly Detection

Input: parameter q
1: A ;
2: th initial threshold
3: Y ¼ faoi � thjaoi > thg
4: g; s MLEðY Þ
5: zq ¼ CalThresholdðq; g; s; k; jY j; thÞ // by Eq. (11)
6: k n
7: for i > 0 do
8: if aui > zq then
9: Add(aui ) in A
10: else if aui > th then
11: Add i in Y
12: g; s MLEðY Þ
13: zq ¼ CalThresholdðq; g; s; k; jY j; thÞ // by Eq. (11)
14: else
15: k kþ 1
16: end if
17: end for

3.4 Data Augmentation Using Time Warping

For the time series similarity measure, euclidean Dis-
tance is mainly used in many applications since it is sim-
ple and effective. While there is another special
similarity measure, named dynamic time warping
(DTW) [37]. DTW can compare the ”shape” of two time
series more accurately and it measures similarity in a
way that is more robust against variations in speed (i.e.,
‘time warping’). For example, heartbeats naturally and
slightly speed up or slow down. However, since DTW is
not differentiable, we cannot directly use it for recon-
struction error in objective Eq. (9). [38] proposed a varia-
tion of DTW called SoftDTW which can be used to
calculate the similarity of time series. We use such
method to replace the euclidean Distance to calculate the
loss of reconstruction as:

LG ¼ SoftDTWðx; x0Þ þ � � SoftDTWðfDðxÞ; fDðx0ÞÞ: (12)

Fig. 5. Fitting data that follows the extremum distribution.
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Furthermore, we propose a modified time warping for
data augmentation to make our model robust against natu-
ral variability involving time warping in real time series. As
shown in Fig. 6, we augment our training data as follows.
For each training beat x, we sample uniformly at random a
small number k1 of time ticks to “slow down” and a differ-
ent k2 time ticks to “speed up” to keep the fixed length of
time series. For each time tick to “speed up”, we will
directly delete the data value at that time tick. While for
each time tick to “slow down”, we will insert a new data
value just before that time tick, whose value is set to the
average of the data values at the 2 adjacent time ticks. This
results in a modified version of x, which we use as addi-
tional training data for our model.

4 EXPERIMENT

In this section, we will design different experiments to
answer the following questions:

Q1. Accuracy. How accurately does our method find out
anomalies compared with other baselines?

Q2. Robustness. How robust can our model achieve with
data augmentation?

Q3. Explainability.Howwell does BeatGANpinpoint anoma-
lous portions of input time series, and route people’s attention?

Q4. Efficiency. How fast does BeatGAN test on samples
compare with other GAN-based baselines?

Q5. Sensitivity. How sensitive does BeatGAN for ampli-
tude and frequency changes? What is the performance of
BeatGAN on controlled synthetic time series?

4.1 Data

We evaluate our proposed model on ECG time series from
MIT-BIH Arrhythmia Database2 [39], sensor time series from
SWaT database.3 And we use motion capture data from the
CMU motion capture database4 to do case study to show the
explainability of ourmethod. The datasets are listed in Table 4.

MIT-BIH ECG dataset. The MIT-BIH arrhythmia dataset
contains 48 ECG records from test subjects from Beth Israel
Hospital. The ground-truth labels are annotated on the R-
peak of each beat by two or more independent cardiologists
indicating positions and types of each heartbeat. As recom-
mended by the AAMI [40], the normal beats include the
beats annotated with labels N, L, and R,5 and the records

named 102, 104, 107, and 218 are removed due to insuffi-
cient signal quality. In total, the dataset contains 97,568
beats and 28.6 million time ticks. In experiments, we aug-
ment the data and normalize them between -1 and 1 by
min-max scaling.

SWaT dataset The secure water treatment system(SWaT)
dataset [41] is collected from a six-stage Secure Water Treat-
ment system. The testbed is designed for representing a large
water refreshing plant which can refresh 5 gallons water per
minute in modern cities. Based on this testbed, we can simu-
late two state modes: normal and abnormal. A total of 25
dimensions which record readings of sensors are regarded
as input dimensions. Generally, this dataset is divided into
train and test sections. The former section contains 496,800
samples collected in the first several days with no anomalies
at all, while 449,919 samples are recorded in the latter section
to simulate anomalies. In experiments, we normalize each
time series x between -1 and 1 bymin-max scaling.

CMUMotion Capture dataset. The dataset contains motion-
captured subjects performing different motions (walking,
jogging, running, etc.). We choose 4 dimensions from differ-
ent sensors on the subject’s body, i.e. left-right arms and legs.
We select 16 walking records of 6,616 ticks in total, 10 jogging
records of 1,608 ticks in total, and 1 jumping record of 2,085
ticks for training and testing separately. Thus we obtain
10,309 time ticks in total. In experiments, we normalize each
time series x between -1 and 1 bymin-max scaling.

4.2 Accuracy

BeatGAN calculates the anomalousness score for each time
tick of a beat. Given an evaluation set Z, BeatGAN calcu-
lates the score of beat si in different ways for different mod-
els and forms a score set S, i.e. S ¼ fsi : AðxiÞ; xi 2 Zg. For
the ECG set, we average the scores of each time tick as score
of the beat. For SWaT dataset, we treat the last time tick as
the anomalousness score of the whole ”beat”. To calculate
metrics, we first standardize the scores between 0 and 1 by
min-max scaling.

s0i ¼
si �minðSÞ

maxðSÞ �minðSÞ :

Then we calculate the two metrics, AUC (Area Under ROC
Curve) and Best F1 score. For AUC metric, we first compute
the ROC curve for the model and AUC is calculated as the
area under the curve. For Best F1 score, we will enumerate
each threshold of scores in test dataset and compute the cor-
responding F1 score. Then we select the highest F1 score
among them as our Best F1 score metric.

We compare the performance with PCA-based method,
one-class SVM (OCSVM) [13] for anomalous class (using
the top 50 features selected by PCA method). DAGMM [33]
is a density based model which combine the autoencoder
and gaussain mixture model. USAD [25] uses autoencoder
structure with adversarial learning to isolate anomalies.
AnoGAN [4] is a deep convolutional generative adversarial
network and Ganomaly [26] utilizes a conditional genera-
tive adversarial network to reconstruct. Besides, we choose
LSTMAD and MAD-GAN as baselines of BeatGAN(RNN).
LSTMAD is an LSTM-based AutoEncoder [42]. The model
MAD-GAN uses the framework of AnoGAN, and replaces

Fig. 6. Data Augmentation by a modified time warping method. ”Speed
up” means that we randomly sample k1 time ticks and delete their val-
ues, ”slow down” means that we randomly sample k2 time ticks and
insert the average value of their two adjacent time ticks before the sam-
pled time ticks.

2. https://physionet.org/content/mitdb/1.0.0/
3. https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
4. http://mocap.cs.cmu.edu/
5. N is Normal beat, L is Left bundle branch block beat and R is

Right bundle branch block beat.
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the underlying convolutional network with LSTM network.
In Table 3, we directly use the result of SWaT reported in
this paper [43]. Finally, we also compare with MSCRED [24],
which employs a convolutional encoder-decoder and atten-
tion-based ConvLSTM network to perform anomaly detec-
tion task.

4.2.1 Evaluation on ECG Dataset

Experimental Setup. We first use a filter [44] to remove the
noise in ECG sequences. We choose 320 time ticks as the
window size for a beat: 140 time ticks before the given R-
peak and 180 ticks after it. We set the dimension size of
latent space as 50, � ¼ 1:0 for objective (9). The structure of
GD learns the architecture of the generator from
DCGAN [45]. We use 5 1D transposed convolutional layers
followed by batch-norm and leaky ReLU activation, with
slope of the leak set to 0.2. The transposed convolutional
kernel’s size and number of each layer are 512(10/1)-256(4/
2)-128(4/2)-64(4/2)-32(4/2): e.g., 512(10/1) means that the
number of filters is 512, the size of filter is 10 and the stride
is 1. GE’s structure is a mirrored version of GD and D has
the same architectural details as GE , which is shown in
Fig. 4. We also design the RNN-based BeatGAN model, we
choose GRU as the underlying cell, the hidden units are set
as 50 and the number of layer is 1. We use Adam optimizer
with an initial learning rate lr ¼ 0:0001, and momentums
b1 ¼ 0:5, b2 ¼ 0:999. Moreover, we use 5-fold cross-valida-
tion for each method, and report the averaged metrics and
standard deviations (std).

Result. As shown in Table 3, the averaged results and std
of the non-linear methods generally have better perfor-
mance in both AUC and Best F1 as compared to PCA and
OCSVM, providing evidence that non-linear models have
advantages on the complex ECG time series. Besides, The

results show that BeatGAN(CNN) perform the best among
the baselines (p-value< 0.01). From the Table 3 and Fig. 8,
we can also notice that the BeatGAN(RNN) perform much
worse than BeatGAN(CNN), the reason maybe that the con-
volutional neural network is more effective in learning
good local features (as well as the combinations of
them) [35] since the ECG time series contains many pat-
terns, like P waves, QRS complex and T waves. And so the
1-D CNN is widely used in many ECG time series [9], [46]

We also design the experiment to verify the performance
of the automatic threshold selection algorithm. Here we
select the 3� s rule as the baseline, the 3� s rule detects
the anomalies as following:

� assume the distribution of the anomaly score is
Gaussian.

� compute the parameters the the Gaussian distribu-
tion m and s

� for each test anomaly score, if it is higher than mþ
3s, then regards it as anomaly

For MIT-BIH dataset, we set the parameter q ¼ 0:04 and
the initial threshold th as 98% percentile. The result is
shown in Fig. 9, we can find out that our algorithm can
achieve the better performance than baseline, and the final
F1 score is only little lower than the best F1 score, which
means it is suitable for the real-world task.

4.2.2 Evaluation on SWaT Dataset

Experimental Setup. For SWaT dataset, since the anomalies
only occur at the end of the time series, we naturally split the
training part and the testing part (the data collected during
the first seven days is training data and the data collected dur-
ing the last four days is testing data).We first down-sample to
original time series to onemeasurement every 5 seconds, then
normalize the multivariate time series to ½�1; 1� by min-max
scale. We slide a window of 60 time ticks along the original
multivariate time series to generate the segments, the stride
size is 1 tick. Since the annotated label is located at each time
tick, we use the reconstruction error of last time tick as the
anomaly score for this ”beat”. The dimension size of latent
space is 20 and � ¼ 0:1. We use both the 1-D CNN based
model and RNN-based model to do the experiments. For
decoderGD of 1-D CNN based BeatGANmodel, we use 4 1D
transposed convolutional layers followed by batch-norm and

TABLE 3
Results of MIT-BIH ECG Dataset and SWaT Dataset

Method MIT-BIH ECG SWaT

Best-F1 score AUC score Best-F1 score AUC score

PCA 0:7087	 0:0047 0:8164	 0:0037 0:7731	 0:0011 0:8222	 0:0023
OCSVM 0:6759	 0:0019 0:7917	 0:0018 0:2761	 0:0042 0:6336	 0:0031
DAGMM 0:6769	 0:0005 0:6999	 0:0002 0:7848	 0:0012 0:7324	 0:0001
USAD 0:3837	 0:0001 0:3521	 0:0001 0:6365	 0:0002 0:7901	 0:0002
AnoGAN 0:7091	 0:0074 0:8642	 0:0100 0:7556	 0:0023 0:7792	 0:0021
Ganomaly 0:7708	 0:0187 0:9083	 0:0122 0:7557	 0:0025 0:8115	 0:0090
LSTMAD 0:7105	 0:0013 0:5960	 0:0008 0:7632	 0:0039 0:8148	 0:0044
MadGAN �� �� 0.77 ��
MSCRED 0:7783	 0:0000 0:6273	 0:0002 0:5960	 0:0029 0:7466	 0:0003

BeatGAN(CNN) 0:8159	 0:0102 0:9447	 0:0053 0:7814	 0:0020 0:8192	 0:0031
BeatGAN(RNN) 0:6910	 0:0233 0:8361	 0:0307 0:7838	 0:0023 0:8185	 0:0033

TABLE 4
The Description of Datasets

Dataset dimension size (time tick) anomalous ratio

MIT-BIH 1 28.6 M 11.1
SWaT 25 946 K 5.8
CMUMotion 4 10.3 K - -

Anomalous ratio is the percentage of anomalous data in total data.
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leaky ReLU activation, with a slope of the leak set to 0.2. The
transposed convolutional kernel’s size and thr number of
each layer are 256(4/1)-128(4/2)-64(4/2)-32(4/2): e.g., 256(4/
1) means that the number of filters is 256, the size of the filter
is 4 and the stride is 1.GE’s structure is a mirrored version of
GD and D has the same architectural details as GE . As for
RNN-based BeatGAN model, we also choose the GRU cell
since it is more concise and effective, the hidden units are set
as 20 and the number of layer is 1. The learning rate of thr
Adam optimizer is 0.001, we test each model with 5 runs and
give themean and std. The result is listed in Table 3.

Result. In the experiment of SWaT dataset, we also com-
pare different baselines. From Table 3, we can find out that
BeatGAN model achieves a high best F1 score, outperform-
ing other baselines except the DAGMM. Because of the
more simple pattern in SWaT dataset, the PCA model can
also achieve a high AUC and Best F1, and both CNN-based
BeatGAN model and RNN-based BeatGAN model have
good performance. The performance of One Class SVM is
worst and the reason may be that the dimension of the time
series is too high. While other models can have good perfor-
mance in this anomaly detection task.

Then we also test the performance of the automatic
threshold selection algorithm compared to the baseline: 3�
s rule. For SWaT dataset, we set the parameter q ¼ 0:1 and
the initial threshold th as 98% percentile. The result is
shown in Fig. 9, we can also find that our algorithm per-
forms better than the baseline, and it proves the algorithm
is suitable for general tasks.

4.2.3 Case Study on Motion Capture Dataset

Experimental Setup. In this experiment, walking is consid-
ered as our normal class. We evaluate BeatGAN on detect-
ing unusual motions of jogging and jumping time series.
We slide a window of 64 time ticks along the original multi-
variate time series to generate beats, and the stride size for
the sliding window is 5 ticks. Thus we obtain 1,729 beats,
with 10,309 time ticks in total, some of which overlap. Since
the data is sparse and small, we test the performance of the
RNN-based BeatGAN model for the study case. We use the
GRU cell with 10 neural units and 1 layer. The dimension
size of latent space is 10 and � ¼ 0:01.

Result. Fig. 10 shows the histogram of normalized anom-
alousness scores on evaluation data. The results show that
the score distributions of walking and others are clearly sep-
arated (red represents the anomalousness scores of walk
and blue represents others), which means our BeatGAN can
perfectly discriminate between unusual motions (jogging/
jumping) and usual motions (walking), by only using time
series of walking for training.

4.3 Data Augmentation and Robustness

In this part, we will test our model to investigate the effec-
tiveness and robustness of the data augmentation strategy.
We test the data augmentation strategy on the ECG dataset,
and we set k ¼ 16 for data augmentation. The result of data
augmentation is shown in Fig. 11. In this experiment, all
BeatGAN models are based on 1D-CNN. And the BeatGAN
(aug) means we augment the training data size to 3� with
time warping strategy. For BeatGAN*(aug), we add the 0.1%
anomalous time series to the training data for evaluating

Fig. 7. An example of anomaly detection on motion capture time series(4-dimensions). The right side shows the original time series and heatmaps
pinpoint the anomalies of jumping/running/hopping from walking motions.

Fig. 8. The ROC curve of different model for MIT-BIH dataset. Fig. 9. The result of automatic threshold selection algorithm.
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robustness. The result shows our data augmentation strategy
can slightly improve the AUC score of BeatGAN model.
Besides, as shown in Fig. 12, with little anomalies(2% - 10%)
in training data, the performance of our BeatGANmodel will
drop slightlywhich also shows the robustness of themodel.

[38] modifies DTW and makes it a differentiable algo-
rithm that can replace the MSE loss in Eq. (9). We use Beat-
GAN CNN model to verify its effectiveness. BeatGAN
(softdtw-softdtw) stands for replacing MSE loss with
SoftDTW loss for both reconstruction error and adversarial
regularization. And BeatGAN(softdtw-mse) stands for only
replacing the error of reconstruction. BeatGAN(mse-mse) is
the same as BeatGAN(CNN) in Table 3. The results shown
in Table 5 demonstrate that the SoftDTW-based model per-
forms slightly worse than the MSE-based model while both
of them outperform other baselines. Furthermore, the lower
standard error shows greater stability of SoftDTW-based
loss which can be utilized more in the future.

4.4 Explainability

Next, we show that BeatGAN can pinpoint the time ticks
when the anomalous pattern occurs. In the right part of
Fig. 2, we compute the residual for each time tick between
input beat and generated beat: resðtÞ ¼ ðxðtÞ � x0ðtÞÞ2 at
time t , and show the heatmap of residual values. As we
observe, our model gives high anomalousness scores for the
abnormal beat (top right) and low anomalousness scores for
the normal beat (bottom right). This abnormal beat is a
‘ventricular escape beat’ and our model correctly identifies
that the abnormal time ticks occur in its QRS complex (cir-
cled region). Besides, our model generates the “normal”
generated beat (dashed lines), which provides additional

explainability by allowing users to compare the generated
beat to the observed beat, to understand how the observed
beat differs.

In Fig. 7, the left time series is the record of walking. On
the right, we illustrate the results of a jogging, jumping or
hopping time series, using a heatmap whose color indicates
the size of the residual at each time tick. We compute the
residual for each time tick by resðtÞ ¼ maxðxðtÞ � x0ðtÞÞ2,
where xðtÞ is a 4-dimensional vector at time t, andmax takes
the max value over the 4 dimensions, which we use as the
anomalousness score of time tick t. The heatmap shows that
BeatGAN cannot well reconstruct the time series of jog-
ging/jumping/hopping, thus correctly assigning them high
anomalousness, since we only use walking time series for
training.

Besides, we also visualize the reconstruction results to
see what the model learns. In Fig. 13, we show the recon-
struction samples of walking, running and hopping time
series. The Fig. 13a shows the reconstruction example of the
walking time series where left is the original input time
series. We can see that the model can reconstruct this walk-
ing time series well, resulting in a low anomalousness score.
And for Figs. 13b and 13c, the reconstruction examples of
running and hopping time series are shown. For running
time series (left picture in Fig. 13b), it has the high frequency
compare to walking time series(left picture in Fig. 13a), while
the reconstructed time series is more like ”walking” state,
leading to a high anomalousness score and so for the hop-
ping time series. From these, wemay find out that our model
can reconstruct the input time serise as more ”normal” time
series and this is in linewith our expectations.

4.5 Efficiency

To verify the efficiency of the BeatGAN, We ran the infer-
ences of BeatGAN, AnoGAN and Ganomaly, which are all
based on generative adversarial network. We run the exper-
iment on a server with a Tesla K80 GPU using ECG datase.

Fig. 11. The performance of BeatGAN with data augmentation.

Fig. 12. The performance degradation of BeatGAN with noised data.

TABLE 5
Results of Soft-DTW and MSE Loss

Method Best F1 Score AUC Score

BeatGAN(softdtw-softdtw) 0:7841	 0:0009 0:9215	 0:0003
BeatGAN(softdtw-mse) 0:7844	 0:0009 0:9223	 0:0002
BeatGAN(mse-mse) 0:8159	 0:0102 0:9447	 0:0053

Fig. 10. Normalized anomalousness score distributions of walking and
others.
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Fig. 13. Reconstruction samples on 4-dimension time series of capturedmotions. (Left is the input time series, right is the reconstructed time series).

Fig. 14. Reconstruction samples on synthetic sine waves. The original time series is plotted by solid lines, and the reconstruction is plotted by dashed
lines. A and F are amplitudes and frequencies respectively. The cases with bold captions are trained and tested by the time series of similar ampli-
tudes and frequencies.
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Three models are all implemented in PyTorch. Besides, we
set the iteration number of AnoGAN as 500 as in [4].

Fig. 16 (the y-axis is a logarithmic scale) shows that Beat-
GAN only takes 2.6 ms per beat, which is 1:5� faster than
Ganomaly and 1415� faster than AnoGAN. Actually, Beat-
GAN is fast for inference at test time since the adversarial
generation of BeatGAN is one-pass through the feed-for-
ward neural network. In contrast, the baseline AnoGAN is a
two-step anomaly detection model. AnoGAN needs an
extra step to find the corresponding latent vector for the
given time series by iterative computation, so it is slowest in
the test phase. While the model Ganomaly is also end-to-
end but it has another encoder network which is more com-
plex compared with BeatGAN.

4.6 Sensitivity Experiments on Synthetic Dataset

To further understand the ability of our BeatGAN model,
we test the model with 1D-CNN as its implementation on
the synthetic time series. We generate the sine waves as our
toy data. There are two main parameters for sine waves:
amplitude and frequency. We create our training dataset
with various amplitudes and frequencies, i.e., low ampli-
tudes randomly in ð0:1; 0:5Þ, high amplitudes randomly in

ð0:5; 0:9Þ; low frequencies randomly in ð1:0; 5:0Þ and high
frequencies randomly in ð5:0; 10Þ, where ða; bÞ means any
real number larger than a and less then b.

So we have 4 combinations for our training dataset to
train our model. For testing, we want to know how well
BeatGAN can reconstruct the sine time series with various
parameters, i.e. amplitudes, and frequencies. Figs. 14a, 14b,
14c, 14d, 14e, 14f, 14g, 14h, 14i, 14j, 14k, 14l, 14m, 14n, 14o,
and 14p shows the different reconstruction examples with
different models. In the first column of figures, the model is
trained by time series of low amplitude and low frequency
and tested separately on time series of low amplitude and
low frequency, low amplitude, and high frequency, high
amplitude and low frequency, and high amplitude, and
high frequency. The second column of figures shows the
results of the model which is trained by time series of low
amplitude and high frequency. And the 3 rd and 4th col-
umns are illustrated as such. From these figures, we can see
that BeatGAN reconstructs well with various amplitudes
and similar frequencies. But BeatGAN is sensitive to fre-
quency, which reconstructions deviate further away from
the originals if the training and testing time series have
quite different frequencies. In another word, the model can
reconstruct well even the amplitude of test sample is not
observed (higher or lower) in training time series, while the
model reconstruct poorly if the frequency of the test sample
is not seen in training.

We also design the quantitative experiments to support
this idea. Fig. 15 shows the quantitative result. The first row
shows the mean reconstruction error with amplitude changes
of different models and the second row shows the mean
reconstruction errorwith frequency changes of differentmod-
els. The first column shows the result of model trained by low
amplitude and low frequency, the second column shows the
model trained by lowamplitude and high frequency, the third
column shows the model trained by high amplitude and low
frequency, and the fourth shows the model trained by highFig. 16. BeatGAN has fast inference (2.6 ms).

Fig. 15. Mean reconstruction errors of training and testing on various amplitudes (A) and frequencies (F).
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amplitude and high frequency. Note that the y-axis is a loga-
rithmic scale. We can find out that the mean reconstruction
error is more steady while the mean reconstruction error
changesmuchmore when frequency changes. The low recon-
struction error may mean the model regards the test samples
are generated from samemechanism as its training datawhile
high reconstruction errormeans the high probability of differ-
ent generationmechanism. This phenomenon reveals that the
model may not actually learn the sine function and the com-
plex pattern like frequency is hard to learn.

5 CONCLUSION

We propose a reconstruction based model with automatic
threshold selection algorithm for time series anomaly detec-
tion. The model detects anomalies using the adversarially
generated time series. For underlying structure, we design
both the 1D CNN based and the RNN based neural net-
work, while the CNN based model is more suitable for med-
ical waveforms and the RNN based model is more suitable
for smoothed waveforms. In conclusion, our model has the
following advantages:

� Unsupervised: BeatGAN is the reconstruction based
anomaly detection model. It detects anomalies by
observing massive normal time series.

� Effectiveness: BeatGAN outperforms baselines in
both accuracy and inference speed, achieving high
accuracy in three datasets and very fast inference.

� Explainability: BeatGAN can pinpoint the anomalous
ticks to route people’s attention as shown in Fig. 2;

� Generality: BeatGAN can also successfully detects
anomalies inmany time series fromdifferent domains.
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